

Expansion and Factorisation of Algebraic Expressions

»» Key Notes

3.1 Quadratic Expressions

A quadratic expression is an expression in the form of:

$$ax^2 + bx + c, \text{ where } a, b \text{ and } c \text{ are constants and } a \neq 0.$$

When adding or subtracting quadratic expressions, we add and subtract like terms.

For example,

$$\begin{aligned} (4x^2 - 3x + 7) - (-2x^2 + 9x - 16) \\ = 4x^2 - 3x + 7 + 2x^2 - 9x + 16 \\ = 4x^2 + 2x^2 - 3x - 9x + 7 + 16 \\ = 6x^2 - 12x + 23 \end{aligned}$$

3.2 Expansion and Simplification of Quadratic Expressions

The **Distribution Law** is also used in the expansion of quadratic equations.

For example,

$$\underline{2x}(4 - 3x) = 8x - 6x^2$$

Note:

When $2x$ is multiplied by $3x$, the constants are multiplied together and the variables are multiplied together to get $6x^2$.

When we multiply quadratic expressions of the form $(a + b)(c + d)$, the expressions in the second bracket should be multiplied by each term in the first bracket.

For example,

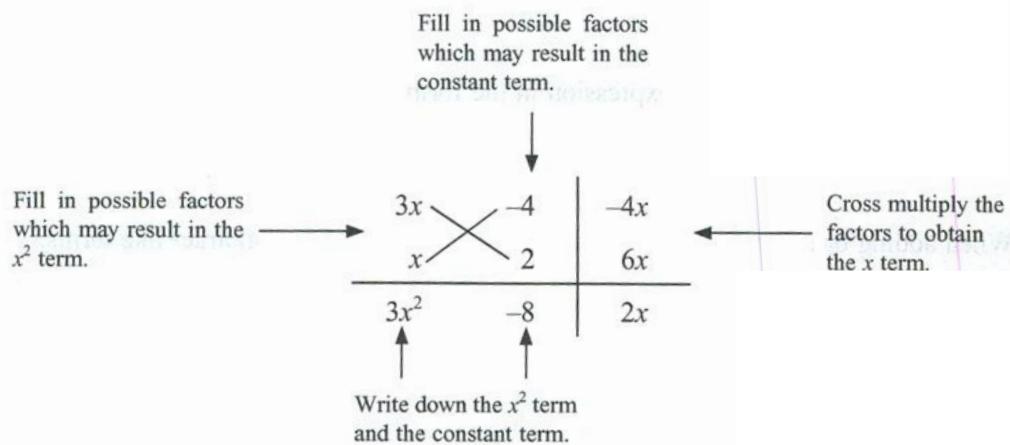
$$\begin{aligned} (3x + 2)(1 - 5x) \\ = 3x(1 - 5x) + 2(1 - 5x) \\ = 3x - 15x^2 + 2 - 10x \\ = -15x^2 - 7x + 2 \end{aligned}$$

Note:

Remember to simplify the expression.

$$(4x - 3)(2x + 5)$$

$$\begin{aligned} &= 4x(2x) + 4x(5) - 3(2x) - 3(5) \\ &= 8x^2 + 20x - 6x - 15 \\ &= 8x^2 + 14x - 15 \end{aligned}$$


Chapter 3 • Expansion and Factorisation of Algebraic Expressions

3.3 Factorisation of Quadratic Expressions using Cross Multiplication

Factorisation is the reverse of expansion. Factorisation involves expressing a quadratic expression as a product of two or more algebraic expressions, which are called factors.

For example,

Factorise $3x^2 + 2x - 8$.

Check the terms in the final row with the original expression. Hence,
 $3x^2 + 2x - 8 = (3x - 4)(x + 2)$.