

Further Expansion and Factorisation of Algebraic Expressions

»» Key Notes

4.1 Special Algebraic Identities

We can expand and factorise algebraic expressions using the algebraic identities as shown below:

$$\begin{aligned}(a + b)^2 &= a^2 + 2ab + b^2 \\ (a - b)^2 &= a^2 - 2ab + b^2 \\ (a + b)(a - b) &= a^2 - b^2\end{aligned}$$

4.2 Further Expansion of Algebraic Expressions

There are two methods to expand algebraic expressions with the following formats.

Completing the square method

For example,

$$\text{Expand } (2x - 3)^2.$$

Note:

We must use the algebraic identities to expand algebraic expressions.

$$\begin{aligned}(2x - 3)^2 &= (2x)^2 - 2(2x)(3) + (3)^2 \\ &= 4x^2 - 12x + 9\end{aligned}$$

For example,
 $(2x - 3)^2 \neq (2x)^2 - (3)^2$

Difference between two squares method

For example,

$$\text{Expand } (x + 2)(x - 2).$$

$$\begin{aligned}(x + 2)(x - 2) &= (x)^2 - (2)^2 \\ &= x^2 - 4\end{aligned}$$

4.3 Further Factorisation of Algebraic Expressions

There are two methods to factorise algebraic expressions with the following formats.

Completing the square method

For example,

$$\text{Factorise } 9x^2 + 30x + 25.$$

$$\begin{aligned}9x^2 + 30x + 25 &= (3x)^2 + 2(3x)(5) + (5)^2 \\ &= (3x + 5)^2\end{aligned}$$

Chapter 4 • Further Expansion and Factorisation of Algebraic Expressions

Difference between two squares method

For example,

Factorise $4x^2 - 25$.

$$\begin{aligned} 4x^2 - 25 &= (2x)^2 - (5)^2 \\ &= (2x - 5)(2x + 5) \end{aligned}$$

4.4 Factorisation by Grouping

Recall what we have learnt in Secondary 1, we can factorise algebraic expressions by grouping terms with common factors.

Grouping 2 by 2 method

For example,

Factorise $2ac + 4bc - 2ad - 4bd$.

$$\begin{aligned} 2ac + 4bc - 2ad - 4bd &= 2ac - 2ad + 4bc - 4bd \leftarrow \\ &= 2a(c - d) + 4b(c - d) \\ &= (2a + 4b)(c - d) \\ &= 2(a + 2b)(c - d) \end{aligned}$$

Note:

- Rearrange the terms, if necessary
- Identify common factors

Grouping 3 by 1 method

For example,

Factorise $4x^2 - 12x + 9 - y^2$.

$$\begin{aligned} 4x^2 - 12x + 9 - y^2 &= (4x^2 - 12x + 9) - y^2 \leftarrow \\ &= [(2x)^2 - 2(2x)(3) + (3)^2] - y^2 \\ &= (2x - 3)^2 - y^2 \leftarrow \\ &= (2x - 3 - y)(2x - 3 + y) \end{aligned}$$

Note:

We group the first three terms together and complete the square.

Note:

We can still factorise the expression using the difference between two squares method.

Grouping 1 by 3 method:

For example,

Factorise $25y^2 - x^2 - 6x - 9$.

$$\begin{aligned} 25y^2 - x^2 - 6x - 9 &= 25y^2 - (x^2 + 6x + 9) \leftarrow \\ &= 25y^2 - [x^2 + 2(x)(3) + (3)^2] \\ &= 25y^2 - (x + 3)^2 \\ &= (5y)^2 - (x + 3)^2 \\ &= [5y - (x + 3)][5y + x + 3] \leftarrow \\ &= (5y - x - 3)(5y + x + 3) \end{aligned}$$

Note:

We group the last three terms together and complete the square.

Note:

We have to multiply the minus sign outside the bracket with $(x + 3)$.