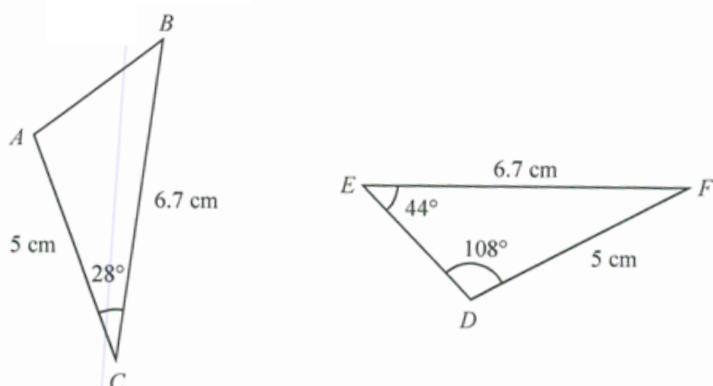

**Class Test 4**

Answer all questions. Show your working clearly.

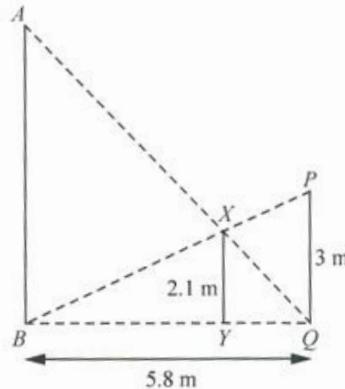



1. Are the following pairs of triangles congruent? Explain your answers.

(a)



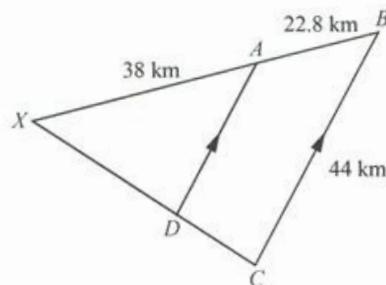
[2]


(b)



[2]

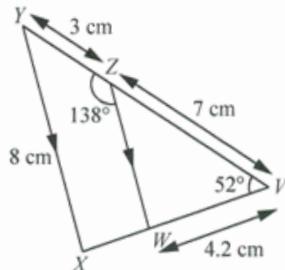
## Chapter 7 • Congruence and Similarity


2. In the diagram below, there are two walls,  $AB$  and  $PQ$ , which are 5.8 m apart. A pole,  $XY$ , measuring 2.1 m tall, is placed between the walls.  $A, X$  and  $Q$  are on the same line and  $B, X$  and  $P$  are on the same line. The wall,  $PQ$ , is 3 m tall.



$\triangle XYQ$  and  $\triangle ABQ$  are similar triangles, and  $\triangle BXY$  and  $\triangle BPQ$  are also similar triangles.

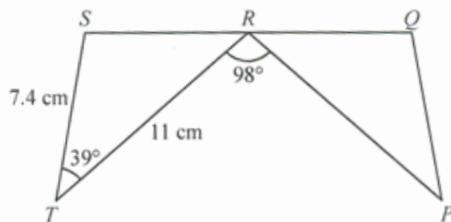
(a) Find the distance between the wall,  $PQ$ , and the pole. [2]  
 (b) Hence, find the height of the wall,  $AB$ . [1]


3. The diagram below shows towns  $A, B, C$  and  $D$ .  $X$  is a gas station. Town  $A$  is 38 km from the gas station and 22.8 km from town  $B$ . Town  $B$  is 44 km from town  $C$ .



$\triangle ADX$  and  $\triangle BCX$  are similar triangles.

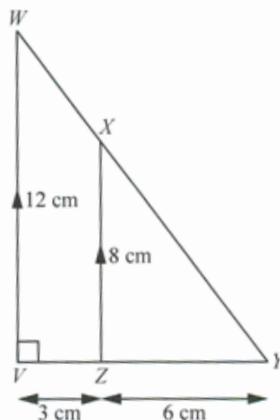
(a) Find the distance between town  $A$  and town  $D$ . [2]  
 (b) Town  $C$  is 52.8 km from the gas station. Find the distance between town  $C$  and town  $D$ . [1]


4.



$\triangle VXY$  and  $\triangle VWZ$  are similar triangles. Find

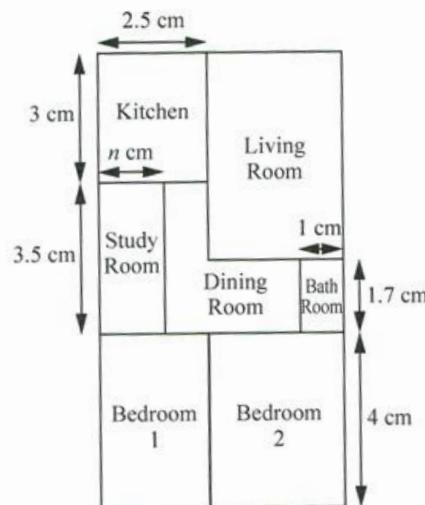
- (a)  $\angle VXY$ , [2]
- (b)  $WZ$ , [2]
- (c)  $WX$ . [1]


5.



$\triangle PQR$  and  $\triangle TSR$  are congruent triangles and  $QS$  is a straight line. Find

- (a)  $\angle SRT$ , [1]
- (b)  $\angle PQR$ , [1]
- (c)  $PQ$ . [1]


6.



Is  $\triangle XYZ$  similar to  $\triangle WYV$ ? Explain your answer. [2]

## Chapter 7 • Congruence and Similarity

7. The diagram below shows a floor plan of an apartment drawn with a scale of 1 : 120. The actual area of the study room is  $7.56 \text{ m}^2$ .



(a) Find the value of  $n$ . [2]

(b) Find the actual area of the dining room, in  $\text{m}^2$ . [2]

(c) Find the actual area of the entire apartment, in  $\text{m}^2$ . [2]

8. A rectangular field  $WXYZ$  has the dimensions 350 m by 240 m.

(a) Draw the field using the scale 1 : 5000 where  $WX$  represent the length of the field. [2]

(b) A cone is placed in the centre of the field at point  $M$ . Mark out  $M$ . [1]

(c) Find the actual distance of  $XM$ , in m. [1]