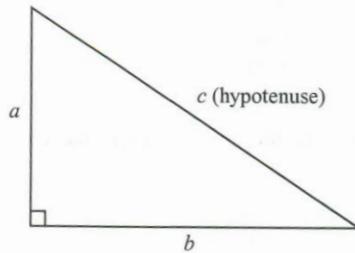


Pythagoras' Theorem and Trigonometric Ratios

»» Key Notes

8.1 Pythagoras' Theorem

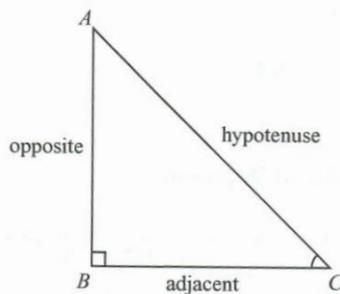
In any right-angled triangle, the longest side, opposite the right angle, is called the **hypotenuse**.



According to the Pythagoras' Theorem, in any right-angled triangle, $a^2 + b^2 = c^2$.

8.2 Trigonometric Ratios

Trigonometric ratios only apply to the acute angles in a right-angled triangle.



Relative to $\angle ACB$, BC is the **adjacent** side and AB is the **opposite** side. The **hypotenuse** is always the side opposite the right angle.

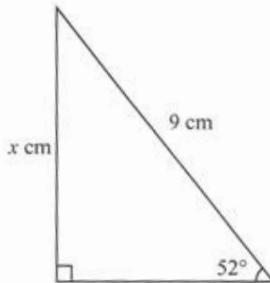
$$\begin{aligned}\sin \angle ACB &= \frac{\text{opposite}}{\text{hypotenuse}} \\ \cos \angle ACB &= \frac{\text{adjacent}}{\text{hypotenuse}} \\ \tan \angle ACB &= \frac{\text{opposite}}{\text{adjacent}}\end{aligned}$$

Trigonometric ratios have no units.

Note:

To remember the ratios, use 'TOA CAH SOH'.

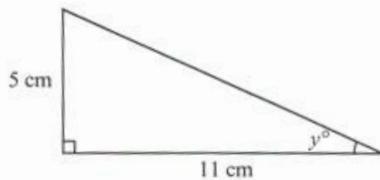
- TOA: $\tan \angle ACB = \frac{\text{opposite}}{\text{adjacent}}$
- CAH: $\cos \angle ACB = \frac{\text{adjacent}}{\text{hypotenuse}}$
- SOH: $\sin \angle ACB = \frac{\text{opposite}}{\text{hypotenuse}}$

8.3 Applications of Trigonometric Ratios

To find the value of x , $\sin 52^\circ = \frac{x}{9}$

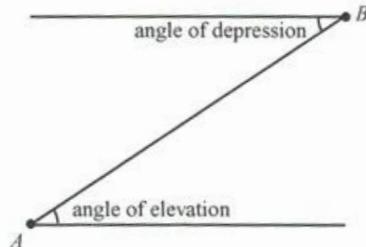
$$\begin{aligned} x &= 9 \sin 52^\circ \\ &= 7.09 \text{ (3 s.f.)} \end{aligned}$$

To find unknown angles in right-angled triangles, we use the inverse trigonometric ratios, \sin^{-1} , \cos^{-1} and \tan^{-1} .



To find $\angle y$, $\tan \angle y = \frac{5}{11}$

$$\begin{aligned} \angle y &= \tan^{-1} \frac{5}{11} \\ &= 24.4^\circ \text{ (1 d.p.)} \end{aligned}$$

8.4 Angle of Elevation and Angle of Depression

If a person stands at point A and looks up to point B , the angle between the horizontal and the line of sight is known as the **angle of elevation**.

If a person stands at point B and looks down to point A , the angle between the horizontal and the line of sight is known as the **angle of depression**.