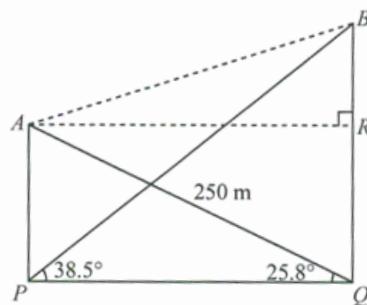


Class Test 4

Answer all questions. Show your working clearly.


30

1. Calculate the unknown values in each of the following equations:

(a) $\cos 82^\circ = \frac{y}{2.5}$ [1]

(b) $21 \tan \theta = 8.2$ [1]

2. In the diagram below, Ali and Betty stand on top of two separate cliffs, a distance away from each other. Ali is at A and Betty is at B . $AQ = 250$ m and the angle of elevation from Q to A is 25.8° . $\angle BPQ = 38.5^\circ$.

Find

(a) the distance between the two cliffs, PQ , [1]

(b) the difference in height between the two cliffs, [2]

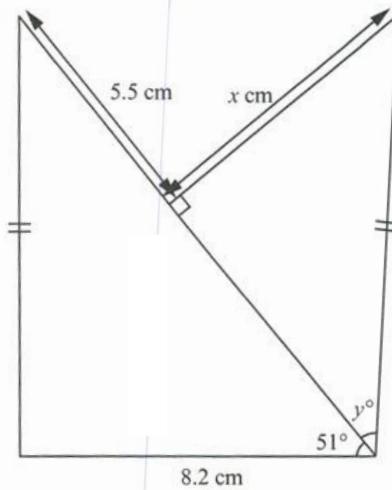
(c) the angle of elevation when Ali looks towards Betty. [1]

Chapter 8 • Pythagoras' Theorem and Trigonometric Ratios

3. In $\triangle ABC$, $\angle ABC = 90^\circ$. Given that $AB = 24$ cm and $\cos \angle CAB = \frac{3}{4}$, find

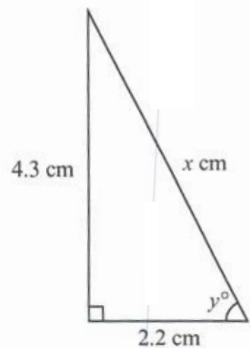
- AC , [1]
- the value of $\sin \angle CAB + \tan \angle ACB$, [2]
- $\angle ACB$. [1]

4. In the diagram below, OM is a lighthouse, a small boat is at X and a ship is at Y . The ship is 198 m from the base of the lighthouse, the angle of elevation from the ship to the top of the lighthouse is 29° and $\angle XMY = 18.8^\circ$.



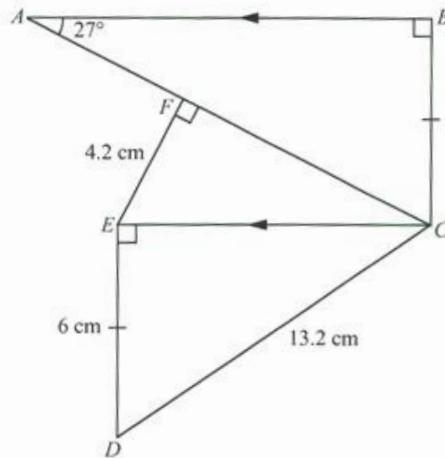
Find

- the height of the lighthouse, [1]
- the distance of the ship from the boat. [2]


5. Find value of x and of y in the following diagrams.

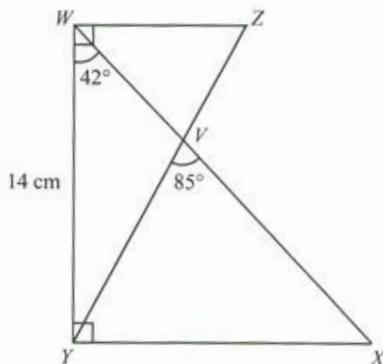
(a)

[4]


(b)

[2]

Chapter 8 • Pythagoras' Theorem and Trigonometric Ratios


6. In the diagram below, $\triangle ABC$, $\triangle EFC$ and $\triangle DEC$ are right-angled triangles and $BC = ED$.

Find

- (a) $\angle CDE$, [1]
- (b) FC , [1]
- (c) AF , [1]
- (d) the area of the entire figure. [3]

7. In the diagram below, $WY = 14$ cm, $\angle YWX = 42^\circ$ and $\angle YVX = 85^\circ$.

Find

- (a) XY , [1]
- (b) $\angle WZY$, [1]
- (c) YZ . [1]

8. A hot air balloon rises vertically in the air. Tom stands at a distance from the lift-off point of the hot air balloon. As he looks up at the hot air balloon with an angle of elevation of 48° , the hot air balloon is 27 m above the ground.

- (a) Find the distance between Tom and the lift-off point. [1]
- (b) When Tom looks up a while later, the hot air balloon has risen another 42.5 m. Find the new angle of elevation between Tom and the hot air balloon. [1]