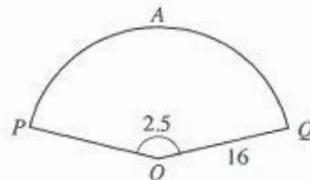


Topic 15**Mensuration**

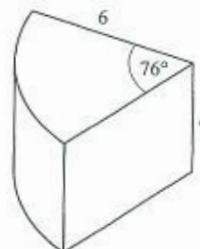
1. A, B and C lie on a circle with centre O and radius 4 cm.
 $\angle AOB = 2.5$ radians.


(a) Find the area of the minor sector AOB . [1]
 (b) (i) Write down an expression, in terms of π , for the reflex angle AOB . [1]
 (ii) Find an expression, in terms of π , for the length of the arc ACB . [1]

(N2011/P1/Q15)

2. A cylindrical container has a radius of 6.8 cm and a capacity of 1.5 litres.
 Calculate the height of the container. [2]

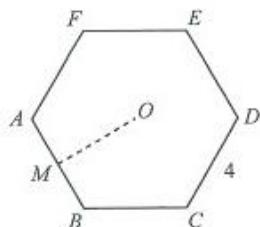
(N2012/P1/Q6)


3. $OPAQ$ is a sector of a circle, centre O , of radius 16 cm.
 The angle at the centre is 2.5 radians.

(a) Calculate the length of the arc PAQ . [1]
 (b) The sector is formed into a cone by joining the two radii, OP and OQ , together.
 Calculate the radius of the base of the cone. [2]
 (c) Change 2.5 radians to degrees. [1]

(N2012/P1/Q21)

4.



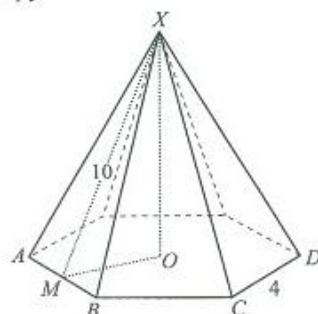
The cross-section of a solid is the sector of a circle of radius 6 cm and angle 76° .
 The height of the solid is 4 cm.
 Calculate the volume of the solid.

[3]
 (N2012/P2/Q5b)

TOPIC 15 Mensuration

5.

A regular hexagon, $ABCDEF$, has sides of length 4 cm.


M is the midpoint of AB and O is the centre of the hexagon.

(a) Show that the area of the hexagon $ABCDEF$ is 41.6 cm^2 , correct to 3 significant figures. [3]

Hexagon $ABCDEF$ forms the base of a pyramid.

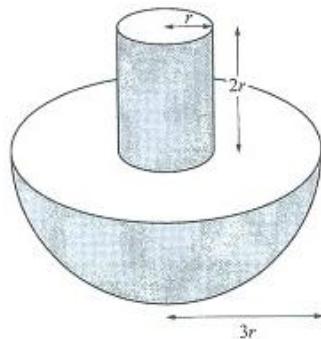
The vertex, X , is directly above O .

The slant height, MX , of the pyramid is 10 cm.

(b) Calculate the total surface area of the pyramid. [2]

(c) Calculate the height, OX , of the pyramid. [2]

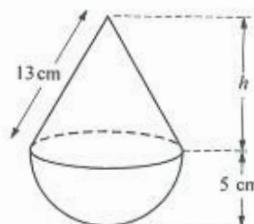
(d) Calculate the volume of the pyramid. [2]


(e) Another similar pyramid is made, with a hexagonal base of side 9 cm.

Find the volume of this pyramid. [2]

(N2012/P2/Q9)

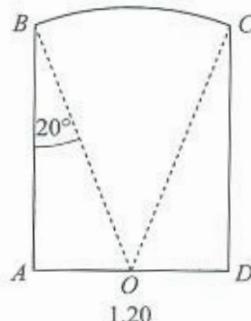
6. This solid is made from a cylinder and a hemisphere. The cylinder has radius r and height $2r$. The hemisphere has radius $3r$.


Find an expression, in terms of π and r , for the **total surface area** of the solid. [3]

(N2013/P1/Q6)

TOPIC 15 Mensuration

7. The diagram shows a solid made from a cone and a hemisphere.


(a) Show that the height, h , of the cone is 12 cm.
 (b) Calculate the volume of the solid.

[1]

[2]

(N2013/P1/Q16)

8.

The diagram shows a symmetrical window frame.

BOC is a sector of the circle, centre O .

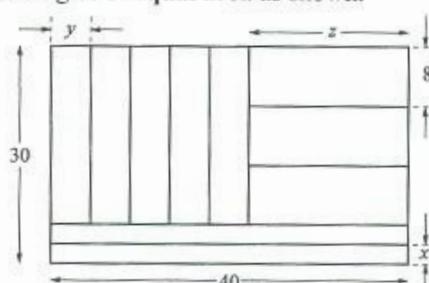
$AD = 1.20$ m, angle $ABO = 20^\circ$ and AB is perpendicular to AD .

(a) Calculate

(i) the radius of the sector BOC , [2]
 (ii) the angle BOC in radians, [2]
 (iii) the total perimeter of the window frame. [4]

(b) A company manufactures windows.

The cost of manufacture is \$78.50 per square metre of window.


Work out the cost of manufacturing this window.

[4]

(N2013/P2/Q8)

9. A rectangle measures 40 cm by 30 cm.

It is divided into ten rectangles of **equal area** as shown.

Find the lengths labeled x , y and z .

[3]

(N2014/P1/Q12)

TOPIC 15 Mensuration

10. The cross-section of a gold pendant is a quadrilateral with two right angles and a circular hole, as shown. All measurements are in centimetres.

The diameter of the circular hole is 0.8 cm.
 The uniform thickness of the pendant is 0.3 cm.
 The mass of 1 cubic centimetre of gold is 19.3 grams.
 The price of 1 gram of the gold is \$69.95.
 Calculate the value of the gold in the pendant.
 Give your answer to the nearest cent.

[5]

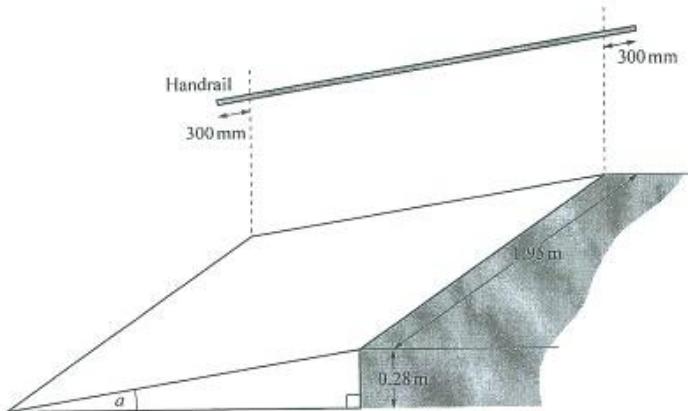
(N2014/P1/Q22)

11. Ravi is playing with 385 one-centimetre cubes.

(a) He uses some of the cubes to make a cuboid measuring 9 cm by 8 cm by 5 cm.
 Calculate the total surface area of the cuboid.

[2]

(b) Ravi uses all 385 cubes to make a cuboid.
 All the sides of the cuboid are longer than 1 cm.
 Find the dimensions of the cuboid.


[2]

(c) Ravi makes the largest cube possible using some of the 385 cubes.
 How many cubes does he have left over?

[2]

(N2014/P1/Q23)

12.

There is a vertical step 0.28 m high on horizontal ground at the entrance to a building.

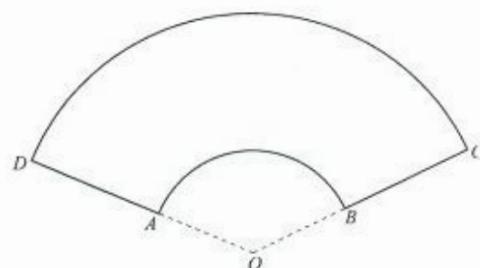
The width of the step is 1.95 m.

A ramp in the shape of a prism is to be installed so that wheelchairs can enter the building.

The gradient of the ramp is such that the ratio vertical distance : horizontal distance is 1 : 12.

The ramp is to be made of concrete.

When it is set, the mass of 1 m³ of concrete is 2300 kg.


Calculate the mass of the completed ramp.

[4]

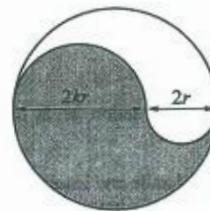
(N2014/P2/Q6b)

TOPIC 15 Mensuration

13.

The diagram shows a mirror $ABCD$.

AB and DC are arcs of circles centre O with radii 20 cm and 50 cm respectively.


The perimeter of the mirror is 235 cm.

(a) Calculate the angle AOB in radians. [2]
 (b) Calculate the area of the mirror. [2]

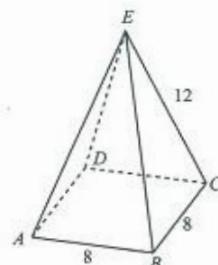
(N2014/P2/Q7b)

14. This design is drawn using a large circle and semicircles.

The diameters, in centimetres, of two of the semicircles are shown.

(a) Show that the total area, A , of the large circle is given by the formula $A = \pi r^2(k + 1)^2$. [2]
 (b) Find, in terms of π and r , the difference in area between the shaded section and the unshaded section when $k = 2$. [4]

(N2015/P1/Q23)


15. The perimeter of a sector of another circle is 14.8 cm.

The angle of the sector is 1.7 radians.

Calculate the area of the sector. [3]

(N2015/P2/Q5b)

16.

The diagram shows a candle in the shape of a pyramid $ABCDE$.

$ABCD$ is a square of side 8 cm and $AE = BE = CE = DE = 12$ cm.

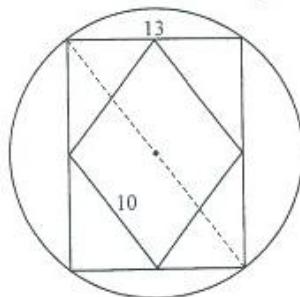
(a) Calculate the volume of the candle. [4]

TOPIC 15 Mensuration

Another candle is made in the shape of a sphere.

The volume of this candle is the same as the volume of candle $ABCDE$.

(b) Show that the radius of the spherical candle is 3.78 cm, correct to 3 significant figures. [2]

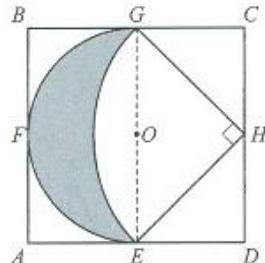

The diagram shows the plan view of a box holding six of the spherical candles.

The box is in the shape of a cuboid and the candles just fit into the box.

(c) Calculate the volume of empty space in the box. [3]

(N2015/P2/Q7)

17. The diagram shows a rhombus drawn inside a rectangle inside a circle.


The rhombus has sides of length 10 cm.

The length of the shorter side of the rectangle is 13 cm.

(a) Calculate the circumference of the circle. [2]
 (b) Calculate the area of the rectangle. [2]

(N2016/P1/Q16)

18.

$ABCD$ is a square, centre O .

$BC = 2r$.

E, F, G and H are the midpoints of the sides of the square.

EFH is a semi-circular arc, centre O .

The other arc EG has centre H .

$HG = \sqrt{2}r$.

What fraction of the square $ABCD$ is not shaded? [5]

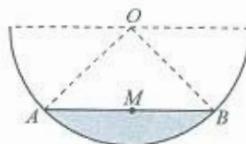
(N2016/P1/Q24)

TOPIC 15 Mensuration

19.

A solid cylinder has radius r cm and height h cm.

A solid hemisphere has radius r cm.


The volumes of the cylinder and hemisphere are equal.

Work out, in terms of r , the total surface area of the cylinder.

[3]

(N2017/P1/Q9)

20.

The diagram shows a semicircle, centre O , radius 30 cm.

M is the midpoint of the chord AB .

$OM = 20$ cm.

(a) Show that angle $AOB = 96.4^\circ$, correct to 3 significant figures.

[2]

(b) Calculate the shaded area.

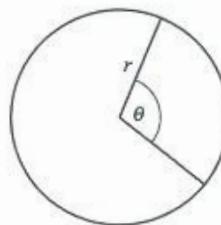
[4]

(c) The semicircle is the cross-section of a water trough of length 1.5 m, standing on level ground.

The shaded area represents the water in the trough.

(i) Calculate the volume of water, in cm^3 , in the trough.

[2]


(ii) Calculate the number of litres of water that must be added to fill the trough.

Give your answer correct to the nearest 10 litres.

[3]

(N2017/P2/Q8)

21.

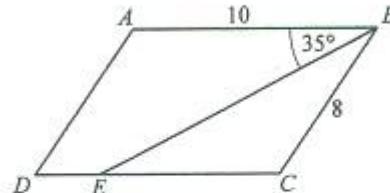
The diagram shows a circle with radius r cm.

The circle is divided into two sectors.

The angle of the minor sector is θ radians.

The perimeter of the major sector is twice the perimeter of the minor sector.

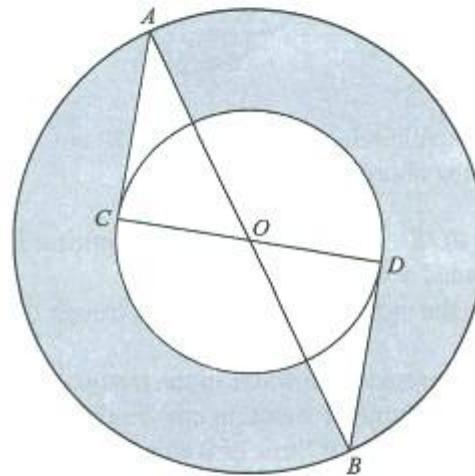
Find the value of θ .


Give your answer correct to three decimal places.

[4]

(N2018/P1/Q16)

TOPIC 15 Mensuration


22.

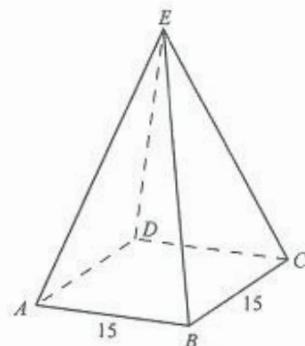
 $ABCD$ is a parallelogram. BE bisects angle ABC . $AB = 10$ cm, $BC = 8$ cm and angle $ABE = 35^\circ$.Calculate the area of trapezium $ABED$.

[5]

(N2018/P1/Q22)

23.

 AB is a diameter of the large circle, centre O . CD is a diameter of the small circle, centre O . AC and BD are tangents to the small circle.The radius of the large circle is 7 cm and $OAC = 30^\circ$.


Calculate the shaded area.

[3]

(N2018/P2/Q7b(ii))

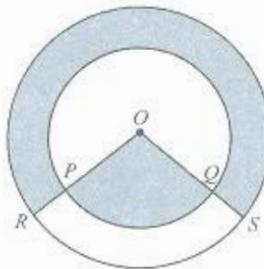
TOPIC 15 Mensuration

24.

The diagram shows a pyramid $ABCDE$.

The base of the pyramid is a square of side 15 cm.

E is vertically above the centre of the square base.


The vertical height of the pyramid is 20 cm.

Calculate the total surface area of the pyramid.

[3]

(N2018/P2/Q8c)

25.

P and Q are points on the circle centre O with radius 4 cm.

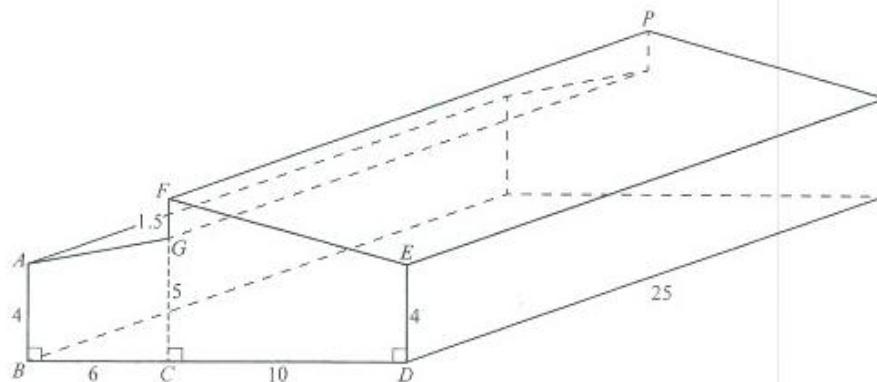
R and S are points on the circle centre O with radius 6 cm.

OPR and OQS are straight lines.

The perimeter of the minor sector OPQ is 15.2 cm.

(a) Calculate angle POQ in radians.

[2]


(b) Calculate the total shaded area.

[3]

(N2019/P2/Q6b)

TOPIC 15 Mensuration

26.

The diagram shows a barn in the shape of a prism of length 25 m with a rectangular base. The barn has two sloping rectangular roofs.

$AB = DE = 4$ m, $BC = 6$ m, $CD = 10$ m, $CG = 5$ m and $FG = 1.5$ m.

The barn is positioned on horizontal ground and the walls are vertical.

- (a) Calculate the volume of the barn. [3]
- (b) Calculate the total area of the two sloping roofs of the barn. [4]
- (c) Calculate the angle of elevation of P from D . [4]

(N2019/P2/Q8)