

Topic 17**Vectors in Two Dimensions**

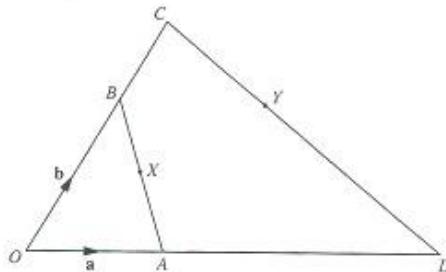
1. (a) P is the point $(3, 4)$. Q is the point $(-1, 2)$.

(i) Write down the column vector \vec{PQ} . [1]

(ii) Find $|\vec{PQ}|$. [2]

(iii) Given that $\vec{PL} = \frac{1}{2} \vec{PQ}$, find \vec{PL} . [1]

(b)



In the diagram, $\vec{OA} = \mathbf{a}$, $\vec{OB} = \mathbf{b}$, $\vec{OB} = 2\vec{BC}$, $\vec{AD} = 2\vec{OA}$ and $\vec{AB} = 2\vec{AX}$.

(i) Express, as simply as possible, in terms of \mathbf{a} and \mathbf{b} ,

(a) \vec{AB} , [1]

(b) \vec{OX} , [1]

(c) \vec{CD} . [1]

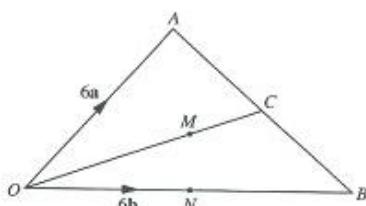
Y is the point on CD such that $CY : YD = 1 : 2$.

(ii) Express \vec{OY} in terms of \mathbf{a} and \mathbf{b} . [2]

(iii) Hence write down two facts about O , X and Y . [1]

(N2011/P2/Q8)

2.



The position vectors of A , B and C , relative to O , are $6\mathbf{a}$, $6\mathbf{b}$ and $(3\mathbf{a} + 3\mathbf{b})$ respectively.

$ON = NB$ and $MC = \frac{1}{3}OC$.

(a) Express in terms of \mathbf{a} and \mathbf{b} , as simply as possible,

(i) \vec{OM} , [1]

(ii) \vec{AM} , [1]

(iii) \vec{AN} . [1]

(b) Use your answers to parts (a)(ii) and (a)(iii) to explain why A , M and N lie in a straight line. [1]

(c) Write down the ratio $AM : AN$. [1]

(N2012/P1/Q25)

TOPIC 17 Vectors in Two Dimensions

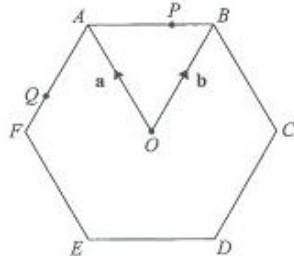
3. (a) L is the point $(3, 2)$.
 The point M is the result of the translation of point L by $\begin{pmatrix} -6 \\ 4 \end{pmatrix}$.

(i) Find the coordinates of point M . [1]

(ii) Find the equation of line LM . [2]

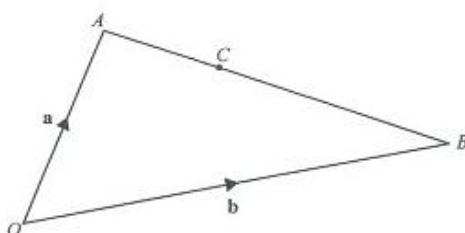
(iii) Given that $\vec{MN} = 2\vec{ML}$, find the coordinates of point N . [1]

(b)

 $ABCDEF$ is a regular hexagon, centre O . $\vec{OA} = \mathbf{a}$ and $\vec{OB} = \mathbf{b}$. P is the point on AB such that $AP : PB = 2 : 1$ and Q is the point on AF such that $AQ : QF = 2 : 1$.(i) Express, as simply as possible, in terms of \mathbf{a} and/or \mathbf{b} ,(a) \vec{AB} , [1](b) \vec{OP} , [1](c) \vec{AQ} . [1](ii) QP intersects OA at the point X . Find \vec{QX} . [2]

(N2013/P2/Q6)

4. OAB is a triangle.
 C is the point on AB such that $AC = \frac{1}{3}AB$.

 $\vec{OA} = \mathbf{a}$ and $\vec{OB} = \mathbf{b}$.

(a) Find \vec{AC} in terms of \mathbf{a} and \mathbf{b} . [1]

(b) D is the point on OB such that $OD : DB = 1 : 3$.
 Use vectors to show that OA and DC are not parallel. [2]

(N2014/P1/Q14)

TOPIC 17 Vectors in Two Dimensions

5. (a) The position vector of point A is $\begin{pmatrix} 1 \\ 5 \end{pmatrix}$ and the position vector of point B is $\begin{pmatrix} -5 \\ -2 \end{pmatrix}$.

(i) Find the column vector \vec{AB} . [1]

(ii) Find $|\vec{AB}|$. [2]

(iii) Given that $\vec{BA} = 2\vec{AC}$, find the coordinates of point C . [2]

(b) The point P has coordinates $(8, -2)$ and $\vec{PQ} = \begin{pmatrix} 4 \\ -3 \end{pmatrix}$.

(i) Find the equation of the line PQ . [2]

(ii) The equation of the line RS is $2y - 4x = 19$.
Find the coordinates of the point of intersection of PQ and RS . [3]

(N2014/P2/Q5)

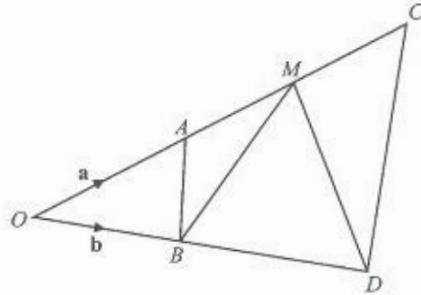
6. A is the point $(-1, 4)$ and $\vec{BA} = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$.

(a) Find the coordinates of point B . [1]

(b) Calculate $|\vec{AB}|$. [1]

(N2015/P1/Q8)

7.



OCD is a triangle where A and M are points on OC and B is a point on OD .

$\vec{OA} = \mathbf{a}$, $\vec{OB} = \mathbf{b}$, $\vec{MB} = \mathbf{b} - 2\mathbf{a}$, and $\vec{MD} = 3\mathbf{b} - 2\mathbf{a}$.

$AM = MC$.

(a) Express, as simply as possible, in terms of \mathbf{a} and/or \mathbf{b} ,

(i) \vec{AB} [1]

(ii) \vec{BD} [1]

(b) Show that $\vec{CD} = 3\mathbf{b} - 3\mathbf{a}$. [1]

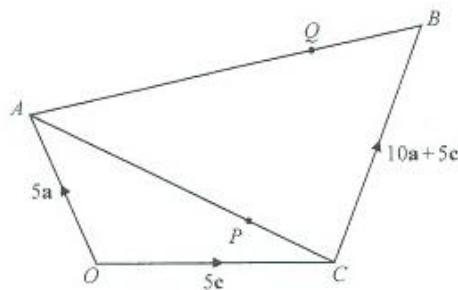
(c) Show that triangles OAB and OCD are similar.
Give a reason for each statement you make. [3]

(d) Find the ratio of the area of triangle OAB to the area of quadrilateral $ABDC$. [2]

(N2015/P2/Q2)

TOPIC 17 Vectors in Two Dimensions

8.

 $OABC$ is a quadrilateral. $\vec{OA} = 5\mathbf{a}$, $\vec{OC} = 5\mathbf{c}$, $\vec{CB} = 10\mathbf{a} + 5\mathbf{c}$ and $\vec{AQ} = 4\mathbf{a} + 8\mathbf{c}$. $AP : PC = 4 : 1$.

(a) Write each of the following in terms of \mathbf{a} and \mathbf{c} .
Give your answers in their simplest form.

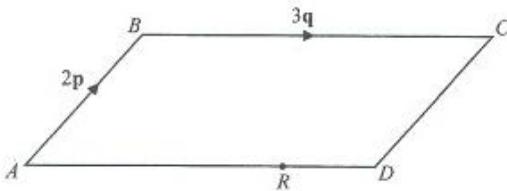
(i) \vec{OP} [2]

(ii) \vec{PQ} [2]

(b) (i) Explain why PQ is parallel to CB . [1]
(ii) Find the ratio $CB : PQ$. [1]

(N2016/P1/Q25)

9.

 $ABCD$ is a parallelogram. $\vec{AB} = 2\mathbf{p}$ and $\vec{BC} = 3\mathbf{q}$. R is the point on AD such that $AR : RD = 2 : 1$.

(a) Express \vec{RC} , as simply as possible, in terms of \mathbf{p} and \mathbf{q} . [2]

(b) S is a point on AD and T is a point on CD such that $\vec{RC} = 2\vec{ST}$.

(i) Show that triangles RCD and STD are similar.

Give a reason for each statement you make.

(ii) Find the ratio area triangle STD : area parallelogram $ABCD$. [2]

(iii) Q is a point on BC .

Triangle QAB is congruent to triangle RCD .From \vec{QR} , as simply as possible, in terms of \mathbf{p} and \mathbf{q} . [2]

(N2017/P2/Q6)

TOPIC 17 Vectors in Two Dimensions

10. (a) $\vec{PQ} = \begin{pmatrix} a \\ 3a \end{pmatrix}$,
 $|\vec{PQ}| = \frac{5\sqrt{10}}{2}$
 Find the two possible values of a . [2]

(b) A line joins the two points $A(-5, 1)$ and $B(43, 38)$.

(i) Find \vec{AB} . [1]

(ii) Use vectors to show whether or not the point $C(11, 13)$ lies on this line. [2]

(N2018/P1/Q18)

11. The point A is translated to $B(5, -2)$ by the vector $\begin{pmatrix} -3 \\ 7 \end{pmatrix}$.

(a) Find the coordinates of point A . [1]

(b) Find the magnitude of $\begin{pmatrix} -3 \\ 7 \end{pmatrix}$. [2]

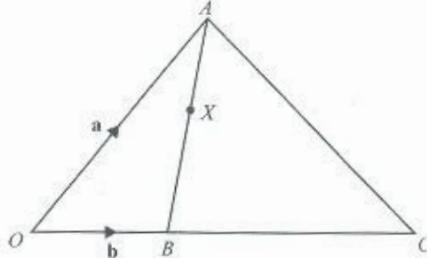
(N2019/P1/Q13)

12. (a) P is the point $(4, -3)$, Q is the point $(-5, 1)$.

(i) Write down the column vector \vec{PQ} . [1]

(ii) R has coordinates $(h, 3)$ and $\vec{PR} = k\vec{PQ}$.
 Find the value of h and the value of k . [2]

(b)



OAC is a triangle and B is a point on OC .

$\vec{OA} = \mathbf{a}$, $\vec{OB} = \mathbf{b}$ and $OB : BC = 2 : 3$.

X is the point on AB such that $AX : XB = 1 : 2$.

(i) Express \vec{AC} in terms of \mathbf{a} and \mathbf{b} , as simply as possible. [2]

(ii) Express \vec{XB} in terms of \mathbf{a} and \mathbf{b} , as simply as possible. [2]

(iii) Y is the point on OC such that $AXYC$ is a trapezium.

Find, in terms of \mathbf{a} and \mathbf{b} , \vec{XY} . [2]

(N2019/P2/Q7)