

Topic 5**Algebraic Expressions and Formulae**

- Petrol costs x cents per litre.
John buys some petrol and it costs him y dollars.
Find an expression, in terms of x and y , for the number of litres that John buys. [2]
(N2011/P1/Q5)
- (a) Simplify $\frac{5c}{2} \div \frac{20c^2}{d}$. [1]
(b) Factorise fully $6x^2 + 14x - 12$. [2]
(N2011/P1/Q8)
- (a) Given that $xy = 2(x + 3)$, express x in terms of y . [2]
(b) Express as a single fraction in its simplest form $\frac{4}{x-2} + \frac{2}{2x+1}$. [2]
(c) Simplify $\frac{4x^2 - y^2}{2x^2 + xy}$. [2]
(N2011/P2/Q1b, c, d)
- (a) The n th term of a sequence is given by $T_n = \frac{n(n+1)}{4}$.
(i) Use the formula to find T_{20} . [1]
(ii) Which term of the sequence has value 33? [2]
(b) p is a positive integer.
(i) Explain why $(2p + 1)$ is an odd number. [1]
(ii) Write down an expression for the next odd number which is greater than $(2p + 1)$. [1]
(iii) Find and simplify expressions for the squares of these two odd numbers. [2]
(iv) Hence explain why the difference between the squares of two consecutive odd numbers is always a multiple of 8. [1]
(N2011/P2/Q5)
- The first four terms of a sequence are 5, 9, 13 and 17.
(a) Write down the 8th term of the sequence. [1]
(b) Find an expression, in terms of n , for the n th term of the sequence. [1]
(c) One term in the sequence is 205.
Find the value of n for this term. [1]
(N2012/P1/Q7)
- (a) Simplify $2(3x + 2y) - 5(x - 2y)$. [1]
(b) Write as a single fraction in its simplest form $\frac{5}{(x+2)^2} - \frac{1}{(x+2)}$. [2]
(N2012/P1/Q11)
- (a) Factorise fully $xy - 3x + 2y - 6$. [2]
(b) Factorise fully $6x^2 - 15x - 9$. [2]
(N2012/P1/Q18)

TOPIC 5 Algebraic Expressions and Formulae

8. (a) Factorise completely $3x^2 - 48y^2$. [2]
 (b) Express as a single fraction in its simplest form $\frac{2x}{5} - \frac{x-1}{15}$. [1]
 (c) Simplify $\frac{x}{2y} \div \frac{3x^2y}{4}$. [1]
 (d) It is given that $V = \frac{4\pi}{3}(a^3 - b^3)$.
 (i) Evaluate V when $a = 2.5$ and $b = 1.9$. [1]
 (ii) Express a in terms of V , π and b . [2]
 (N2012/P2/Q1)

9. Simplify $5p - 3(p - 2)$. [1]
 (N2013/P1/Q1a)

10. (a) Simplify $12x^2y \div 3xy^5$. [1]
 (b) Write as a single fraction in its simplest form $\frac{3x}{(2x-1)^2} - \frac{2}{2x-1}$. [2]
 (N2013/P1/Q17)

11. (a) Factorise completely $3xy - 6ay - 4x + 8a$. [2]
 (b) Factorise $3x^2 + 10x - 8$. [2]
 (N2013/P1/Q18)

12. (a) It is given that $s = ut + \frac{1}{2}at^2$.
 (i) Find s when $u = 0$, $a = 0.6$ and $t = 15$. [1]
 (ii) Express a in terms of s , u and t . [2]
 (b) (i) Factorise completely $18p^2 - 8$. [2]
 (ii) Simplify $\frac{18p^2 - 8}{6p^2 - 14p - 12}$. [2]
 (c) Express as a single fraction in its simplest form $\frac{6}{3-2x} - \frac{4}{2-x}$. [2]
 (N2013/P2/Q1)

13. The first three terms in a sequence of numbers, T_1, T_2, T_3, \dots are given below.
 $T_1 = 1^2 + 2 = 3$
 $T_2 = 2^2 + 4 = 8$
 $T_3 = 3^2 + 6 = 15$
 (a) (i) Find T_4 . [1]
 (ii) Find an expression, in terms of n , for T_n . [2]
 (iii) Evaluate T_{50} . [1]
 (b) The first four terms in a different sequence are $-5, -1, 3, 7$.
 Find an expression, in terms of n , for the n th term, P_n , of this sequence. [2]
 (c) By forming an equation in n , find the values of n for which

$$\frac{P_n}{T_n} = \frac{1}{5}$$
. [3]
 (N2013/P2/Q4)

TOPIC 5 Algebraic Expressions and Formulae

14. Some bacteria were introduced into a culture.

The number, B , of bacteria t hours after being introduced is given by

$$B = 1000 \times 3^t.$$

(a) How many bacteria were introduced into the culture? [1]

(b) Find the percentage increase in the number of bacteria at the end of the first hour. [1]

(N2014/P1/Q9)

15. Simplify $\frac{1}{x-5} + \frac{7x}{(x-5)^2}$. [2]

(N2014/P1/Q16b)

16. Each term in this sequence is found by adding the same number to the previous term.

$$a, 12, b, c, 33, \dots$$

(a) Find the values of a , b and c . [2]

(b) Write down an expression, in terms of n , for the n th term. [1]

(c) Explain why 109 is not a term of this sequence. [1]

(N2014/P1/Q17)

17. (a) It is given that $W = \frac{1}{2}m(v^2 - u^2)$.

(i) Find W when $m = 3$, $u = 4$ and $v = 10$. [1]

(ii) Express u in terms of W , m and v . [2]

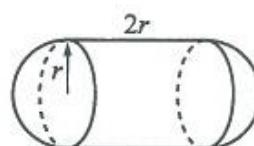
(b) Simplify $\frac{8xy + 2x^2}{x^2 - 16y^2}$. [2]

(N2014/P2/Q1b, c)

18. Simplify $\frac{4x}{3} - \frac{3(2-5x)}{4}$. [2]

(N2015/P1/Q5)

19. Factorise fully $4ax - 3ay - 8bx + 6by$. [2]


(N2015/P1/Q7)

20. (a) The surface area of a solid is given by $A = \pi p(2p + q)$.

Make q the subject of the formula. [2]

(b) Another solid is made from a cylinder and two hemispheres.

The cylinder has radius r and length $2r$ and the hemispheres have radius r .

The total surface area of the solid is twice the total surface area of a cone with radius r and slant height l .

Find l in terms of r . [3]

(N2015/P1/Q21)

TOPIC 5 Algebraic Expressions and Formulae

21. (a) Factorise $9x^2 - 16y^2$. [1](b) Express as a single fraction in its simplest form

(i) $\frac{15xy}{12} \div \frac{9x^2}{4y}$, [1]

(ii) $\frac{6}{2x-3} - \frac{1}{x+2}$. [2]

(N2015/P2/Q1a, b)

22. (a) The first four terms in a sequence are 55, 51, 47 and 43.(i) Find an expression, in terms of n , for the n th term, T_n , of this sequence. [2](ii) Evaluate T_{25} . [1](b) The diagram shows part of a number grid.

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	25	26				

A square outlining four numbers, as shown, can be placed anywhere on the grid.

(i) If n represents the number in the top left corner of the square, write down an expression, in terms of n , for the number in the bottom right corner of the square. [1]

(ii) Show that the difference between the products of the numbers in the opposite corners of the square is always 8. [2]

(iii) Show that the sum of the four numbers in the square cannot be 260. [3]

(N2015/P2/Q8)

23. (a) Simplify $3(2x - 1) + 1$. [1](b) Factorise $6x + 18xy$. [1]

(N2016/P1/Q1)

24. Factorise completely $4ax + 12by - 16ay - 3bx$. [2]

(N2016/P1/Q2)

25. n is a positive integer.Show that, for all n , $(5n + 1)^2 - (5n - 1)^2$ is a multiple of 20. [2]

(N2016/P1/Q4)

26. Write as a single fraction in its simplest form $\frac{3}{(x-4)^2} - \frac{1}{(4-x)}$. [2]

(N2016/P1/Q9)

27. (a) It is given that $a = \frac{4b-5c}{b+c}$.(i) Find a when $b = 5$ and $c = -2$. [1](ii) Express b in terms of a and c . [2](b) Simplify $\frac{9x^2 - 4}{3x^2 - 10x - 8}$. [3]

(N2016/P2/Q1a, d)

TOPIC 5 Algebraic Expressions and Formulae

28. The first four terms in a sequence of numbers are given below.

$$T_1 = 2^2 + 5 = 9$$

$$T_2 = 3^2 + 8 = 17$$

$$T_3 = 4^2 + 11 = 27$$

$$T_4 = 5^2 + 14 = 39$$

(a) Find T_5 . [1]

(b) Explain why the value of T_n must be odd for all values of n . [1]

(c) Show that the n th term of the sequence, T_n , is given by $n^2 + 5n + 3$. [3]

(d) T_p and T_{p+1} are consecutive terms in the sequence.

Find and simplify an expression, in terms of p , for $T_{p+1} - T_p$.

(e) Explain why two consecutive terms of the sequence cannot have a difference of 4. [1]

(N2016/P2/Q4)

29. (a) Factorise completely $2x^2 - 5x - 12$. [2]

(b) Hence factorise completely $2(2y - 3)^2 - 5(2y - 3) - 12$.

Write your answer as simply as possible. [2]

(N2017/P1/Q14)

30. In a sequence, the same number is subtracted each time to obtain the next term.

The first five terms of the sequence are

$$39 \ p \ q \ r \ 11 \ .$$

(a) Find the values of p , q and r . [2]

(b) Write down an expression for the n th term of this sequence. [2]

(c) Explain why -246 is not a term of this sequence. [1]

(N2017/P1/Q20)

$$31. A = \frac{b(c+2)}{5-c}$$

(a) Calculate the value of A when $b = 12.17$ and $c = 1.615$.

Write your answer correct to two decimal places. [2]

(b) Rearrange the formula to make c the subject. [4]

(N2017/P1/Q22)

$$32. (a) \text{ Express as a single fraction in its simplest form } \frac{2y}{5-2y} - \frac{3y}{(5-2y)^2}.$$

[2]

$$(b) \text{ Simplify } \frac{18h^3j^3}{5k^3} \div \frac{3h^5k}{10j^2}.$$

[2]

$$(c) \text{ Simplify } \left(\frac{16t^8}{v^{12}}\right)^{\frac{1}{4}}.$$

[2]

(N2017/P2/Q1b, c, d)

33. Show that $(3n - 1)^2 + 2$ is a multiple of 3 for all integer values of n . [2]

(N2018/P1/Q5)

34. Factorise completely

$$(a) 8p^2q - 6pq^3,$$

[2]

$$(b) 6x^2y - 2xy + 3x - 1.$$

[2]

(N2018/P1/Q13)

TOPIC 5 Algebraic Expressions and Formulae

35. Rearrange the formula $y = \frac{x^2 + 3}{x^2 - a}$ to make x the subject. [4]
(N2018/P1/Q17)

36. (a) Write as a single fraction in its simplest form
 (i) $\frac{5t^2}{v} \div \frac{25t}{v^3}$, [1]
 (ii) $\frac{4}{3-2y} - \frac{5}{y+3}$. [2]

(b) Simplify $\frac{16x^2 - 9}{4x^2 - 9x - 9}$. [3]
(N2018/P2/Q1a, b)

37. (a) These are the first four terms in a sequence.
 11 17 23 29
 (i) Find an expression, in terms of n , for the n th term of the sequence. [2]
 (ii) Explain why it is not possible for a term in the sequence to be a multiple of 3. [1]

(b) The n th term of a difference sequence is given by $T_n = \frac{4n-1}{205-5n}$.
 (i) Use the formula to find T_5 .
 Give your answer as a fraction. [1]
 (ii) The value of T_k can be simplified to $\frac{7}{32}$.
 Find the value of k . [3]
 (iii) Find the least value of n for which $T_n > 1$. [3]
(N2018/P2/Q4)

38. Write as a single fraction in its simplest form $\frac{1}{2x-3} - \frac{3}{3x-1}$. [2]
(N2019/P1/Q6)

39. (a) Factorise $x^2 - y^4$. [1]
 (b) Factorise completely $6ab + 1 - 3a - 2b$. [2]
(N2019/P1/Q11)

40. (a) The first four terms of a sequence are 8, 11, 14 and 17.
 The sum of the first n terms of this sequence is given by $pn^2 + qn$.
 (i) When $n = 1$, $p + q = 8$.
 Show that $4p + 2q = 19$. [1]
 (ii) Solve $p + q = 8$
 $4p + 2q = 19$. [3]
 (b) The sum of the first n terms of a different sequence is given by $3n^2 + 7n$.
 Find the 10th term of this sequence. [2]
(N2019/P1/Q25)

TOPIC 5 Algebraic Expressions and Formulae

41. (a) Simplify $\frac{4p^2r}{3} \div \frac{2r^3}{p}$. [1]

(b) $a = \frac{3b + 4c}{5 - b}$

(i) Evaluate a when $b = 6$ and $c = -2$. [1]

(ii) Express b in terms of a and c . [2]

(c) (i) Express $9 - 7x + x^2$ in the form $p + (q + x)^2$. [2]

(ii) Write down the coordinates of the minimum point of the graph of $9 - 7x + x^2$. [1]

(N2019/P2/Q1a, b, c)

42. In a sequence, S , the difference between consecutive terms is constant.
The third term of this sequence is 36.
The sixth term of this sequence is 60.

(a) Find an expression, in terms of n , for the n th term of this sequence. [2]

(b) Explain why the terms of the sequence are all multiples of 4. [1]

(N2019/P2/Q5b)