

EXPANSION AND FACTORISATION USING SPECIAL ALGEBRAIC IDENTITIES

LEARNING OBJECTIVES

In this topic, we will learn to:

- · apply three special algebraic identities to expand algebraic expressions
- · apply three special algebraic identities to factorise algebraic expressions

5.1 EXPANSION USING SPECIAL ALGEBRAIC IDENTITIES

 Algebraic expressions of the form of perfect squares can be expanded as

(a)
$$(a+b)^2 = a^2 + 2ab + b^2$$
,

(b)
$$(a-b)^2 = a^2 - 2ab + b^2$$
.

Note: $(a+b)^2 = (a+b)(a+b) = a^2 + ab + ba + b^2$ $(a-b)^2 = (a-b)(a-b) = a^2 - ab - ba + b^2$

2. Algebraic expressions of the form of a difference of two squares can be expanded as $(a+b)(a-b) = a^2 - b^2$.

WORKED EXAMPLE 1

Expand the following.

(a)
$$(x+3)^2$$

(b)
$$(5x+1)^2$$

(c)
$$(2y \div 7x)^2$$

Worked Solution:

(a)
$$(x+3)^2 = x^2 + 2(x)(3) + 3^2$$

= $x^2 + 6x + 9$

(b)
$$(5x+1)^2 = (5x)^2 + 2(5x)(1) + 1^2$$

= $25x^2 + 10x + 1$

(c)
$$(2y + 7x)^2 = (2y)^2 + 2(2y)(7x) + (7x)^2$$

= $4y^2 + 28xy + 49x^2$

Student's common mistake:

In part (b) of the example, writing $(5x)^2$ as $5x^2$ is wrong. $(5x)^2 = 5x \times 5x = 25x^2$.

Expand the following.

(a)
$$(x-3)^2$$

(b)
$$(3-2x)^2$$

(c)
$$(2y-7x)^2$$

Worked Solution:

(a)
$$(x-3)^2 = x^2 - 2(x)(3) + 3^2$$

= $x^2 - 6x + 9$

(b)
$$(3-2x)^2 = 3^2 - 2(3)(2x) + (2x)^2$$

= $9 - 12x + 4x^2$

(c)
$$(2y - 7x)^2 = (2y)^2 - 2(2y)(7x) + (7x)^2$$

= $4y^2 - 28xy + 49x^2$

WORKED ENAMPLE 3

Expand the following.

(a)
$$(x+7)(x-7)$$

(b)
$$(2x-5y)(2x+5y)$$

Worked Solution:

(a)
$$(x+7)(x-7) = x^2 - 7^2$$

= $x^2 - 49$

(b)
$$(2x-5y)(2x+5y) = (2x)^2 - (5y)^2$$

= $4x^2 - 25y^2$

WORKED EXAMPLE 4

Given that $m^2 + n^2 = 14$ and mn = 6, find the value of $(m + n)^2$.

Worked Solution:

$$(m+n)^2 = m^2 + 2mn + n^2$$

= $m^2 + n^2 + 2mn$
= $14 + 2(6)$
= **26**

Evaluate the following without using a calculator.

Worked Solution:

(a)
$$105^2 = (100 + 5)^2$$

= $100^2 + 2(100)(5) + 5^2$
= $10000 + 1000 + 25$
= 11 025

(b)
$$399^2 = (400 - 1)^2$$

= $400^2 - 2(400)(1) + 1^2$
= $160\ 000 - 800 + 1$
= **159 201**

(c)
$$128 \times 132 = (130 - 2)(130 + 2)$$

= $130^2 - 2^2$
= $16900 - 4$
= 16896

5.2 FACTORISATION USING SPECIAL ALGEBRAIC IDENTITIES

1. Factorisation is the opposite of expansion.

(a)
$$a^2 + 2ab + b^2 = (a+b)^2$$

(b)
$$a^2 - 2ab + b^2 = (a - h)^2$$

(c)
$$a^2 - b^2 = (a+b)(a-b)$$

WORKED EXAMPLE 6

Factorise the following completely.

(a)
$$x^2 + 4x + 4$$

(b)
$$9x^2 + 6x + 1$$

(e)
$$4y^2 + 20xy + 25x^2$$

Worked Solution:

(a)
$$x^2 + 4x + 4 = x^2 + 2(x)(2) + 2^2$$

= $(x + 2)^2$

(b)
$$9x^2 + 6x + 1 = (3x)^2 + 2(3x)(1) + 1^2$$

= $(3x + 1)^2$

(c)
$$4y^2 + 20xy + 25x^2 = (2y)^2 + 2(2y)(5x) + (5x)^2$$

= $(2y + 5x)^2$

Factorise the following completely.

(a)
$$x^2 - 8x + 16$$

(b)
$$8x^2 - 40x + 50$$

(c)
$$9x^2 - 12xy + 4y^2$$

Worked Solution:

(a)
$$x^2 - 8x + 16 = x^2 - 2(x)(4) + 4^2$$

= $(x - 4)^2$

(b)
$$8x^2 - 40x + 50 = 2(4x^2 - 20x + 25)$$

= $2[(2x)^2 - 2(2x)(5) + 5^2]$
= $2(2x - 5)^2$

(c)
$$9x^2 - 12xy + 4y^2 = (3x)^2 - 2(3x)(2y) + (2y)^2$$

= $(3x - 2y)^2$

WORKED EXAMPLE 8

Factorise the following completely.

(a)
$$4x^2 - 49$$

(b)
$$12y^2 - 3x^2$$

Worked Solution:

(a)
$$4x^2 - 49 = (2x)^2 - 7^2$$

= $(2x + 7)(2x - 7)$

(b)
$$12y^2 - 3x^2 = 3(4y^2 - x^2)$$

= $3[(2y)^2 - x^2]$
= $3(2y + x)(2y - x)$

Evaluate the following without using a calculator.

(a)
$$90^2 - 10^2$$

(b)
$$102^2 - 4$$

Worked Solution:

(a)
$$90^2 - 10^2 = (90 + 10)(90 - 10)$$

= 100×80
= 8000

(b)
$$102^2 - 4 = 102^2 - 2^2$$

= $(102 + 2)(102 - 2)$
= 104×100
= 10400

PRACTICE QUESTIONS

1. Expand the following.

(a)
$$(x+5)^2$$

(b)
$$(3x+1)^2$$

(c)
$$(2+3x)^2$$

(d)
$$(7x + 9y)^2$$

Expand the following.

(a)
$$(x-4)^2$$

(b)
$$(2x-5)^2$$

(c)
$$(6-x)^2$$

(d)
$$(x-3y)^2$$

Expand the following.

(a)
$$(x+5)(x-5)$$

(b)
$$(3x - 5y)(3x + 5y)$$

4. Given that $x^2 + y^2 = 1000$ and xy = 56, find the value of $(x + y)^2$.

5. Given that $m^2 - n^2 = 48$ and m - n = 5, find the value of $2(m + n)^2$.

6. Evaluate the following without using a calculator.

(a) 102²

- (b) 48²
- (c) 196 × 204

- 7. Factorise the following completely.
 - (a) $x^2 + 6x + 9$
 - (b) $9x^2 + 12x + 4$
 - (c) $25x^2 + 30xy + 9y^2$
- 8. Factorise the following completely.
 - (a) $x^2 6x + 9$
 - (b) $12x^2 12x + 3$
 - (c) $4x^2 12xy + 9y^2$
- 9. Factorise the following completely.
 - (a) $4x^2 9$

- (b) $x^2 25y^2$
- 10. Evaluate the following without using a calculator.
 - (a) 75² 25²

- (b) $105^2 25$
- 11. It is given that x is a positive integer.
 - (a) Stella thinks that 2x + 3 is an odd number. Is she correct? Explain your answer.
 - (b) Find an expression for the square of the closest odd number which is smaller than 2x + 3.