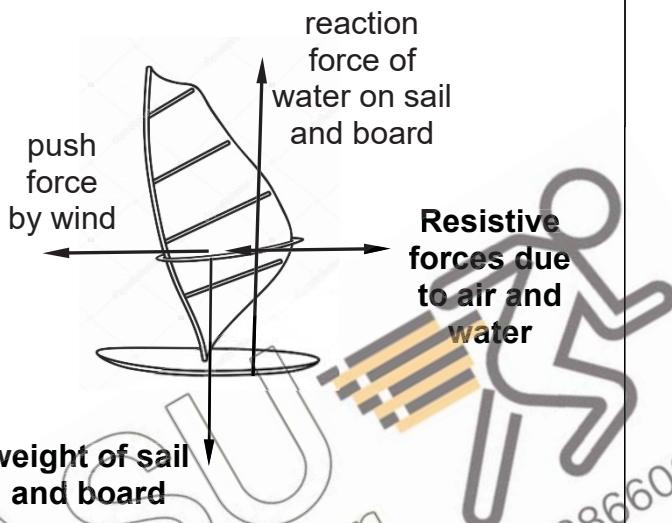

Solution and Mark Scheme


Paper 1: Multiple Choice Questions

Q1.	Q2.	Q3.	Q4.	Q5.
B	D	D	D	A
Q6.	Q7.	Q8.	Q9.	Q10.
C	D	B	B	C
Q11.	Q12.	Q13.	Q14.	Q15.
C	B	A	D	C
Q16.	Q17.	Q18.	Q19.	Q20.
B	C	A	C	D

Paper 2 Section A: Short-structured Questions

Q/N		Solution	Remarks
A1	(a)	1 cm rep 500 N	

	(b)	<p>Using the given scale $11.9 \text{ cm} = 5950 \text{ N}$</p> <p>Magnitude of resultant force = 5950 N [1]</p> <p>Direction = accept <u>range of 17° to 19°</u> anticlockwise from 4000 N force [1] (if only angle given still accept)</p>	
A2	(a)	<p>No marks if only one of two is given. No marks if no label written</p>	
	(b)	<p>Resultant force is zero. [1]</p> <p>Forward force (by the wind) = backward drag/friction forces in the water [1]</p>	
A3	(a)	<p>Pressure differs because the <u>cross-sectional area of 4 legs are in contact with the ground</u> in Fig. 2.1 instead of only 2 in Fig. 2.2.</p>	
	(b)	<p>His <u>line of weight will act outside the legs</u> of the chair which will create an <u>anti-clockwise moment</u> to the chair causing Peihua to topple over.</p>	
A4	(a)	<p><u>Particles move in clusters sliding over one another</u>. But movement still limited due to intermolecular forces.</p>	
	(b)	<p><u>Particles more closely packed in solids.</u> [1]</p> <p>Since there is <u>greater mass per unit volume in solids</u> compared to gases, density of solids is generally higher.</p>	

[Turn over

Paper 2 Section B: Free Response Questions

Q/N		Solution	Remarks
B5	(a)	<p>At 20 s – parachute opens or speed drops from (50 to 5 m/s) or decelerates (e.g. uniformly)</p> <p>At 55 s - parachutist lands/hits ground or speed becomes 0 or stops (e.g. decelerates)</p>	
	(b)	<p>Parachutist falls with <u>increasing speed</u> but acceleration not constant. [1]</p> <p><u>Acceleration decreases until speed becomes constant</u> [1]</p>	
	(c)	<p>Weight = drag/resistive forces [1]</p> <p>Resultant force zero [1]</p>	
	(d)	<p>Distance travelled = $5 \times (55-25)$ = 150 m</p>	
B6	(a)	<p>Pressure from master cylinder piston transmitted to slave piston. [1]</p> <p>Pressure produces force to push piston [1]</p>	
	(b) (i)	$P = F/A = 140/2 = 70 \text{ N/cm}^2$ [1] [1]	
	(ii)	$F = P \times A = 70 \times 2.8 = 196 \text{ N}$ [1] [1]	
	(iii)	<p>The <u>distance from pivot to piston is smaller than</u> [1]</p> <p><u>distance from pivot to line of force applied at the brake pedal. And for moment clockwise equal to anticlockwise, the corresponding applied force must be greater at the piston.</u> [1]</p>	
B7	(a) (i)	$\text{KE} = \frac{1}{2} \times 900 \times 5^2$ [1] = 11250 J	
	(ii)	<p>Since total energy remains constant,</p> $\text{KE at B} = \text{KE at A} + \text{GPE at A}$ = $11250 + 900(10)(5)$ [1] = 56250 J	
	(iii)	<p>Minimum energy required to move from A to C</p> = GPE at C – GPE at B = $900(10)(8) - 45000$ [1] = 27000 J [1]	

[Turn over

	(b)	No. [1] The additional energy of 11250 J it possesses is insufficient compared with minimum energy required of 27000 J [1]	
	(c)	GPE increases, KE decreases [1]	
	(d)	<u>Subsequent hills</u> after the first hill <u>must be lower in height</u> so that coaster can move up without any additional fuel required. [1]	

[Turn over