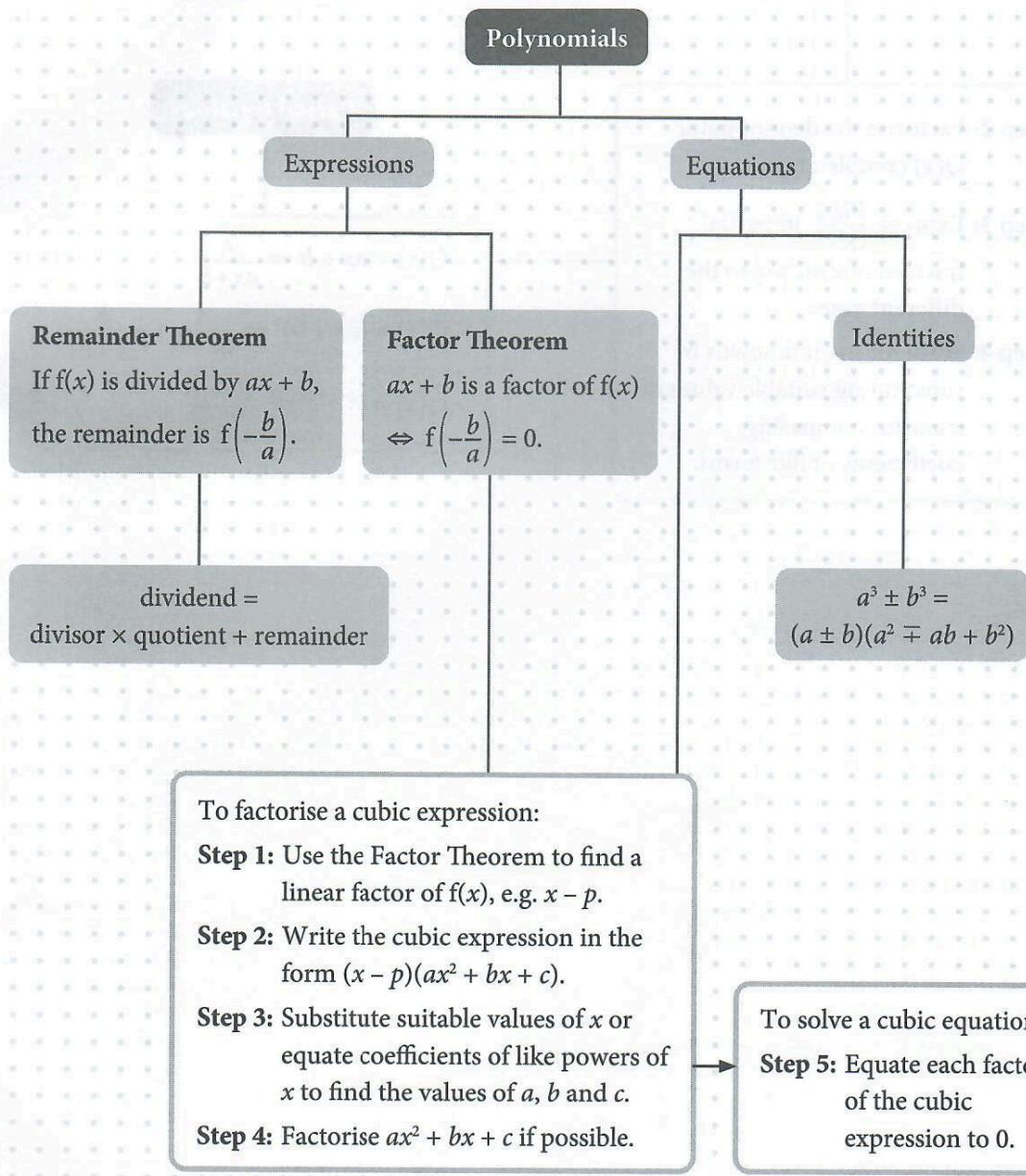
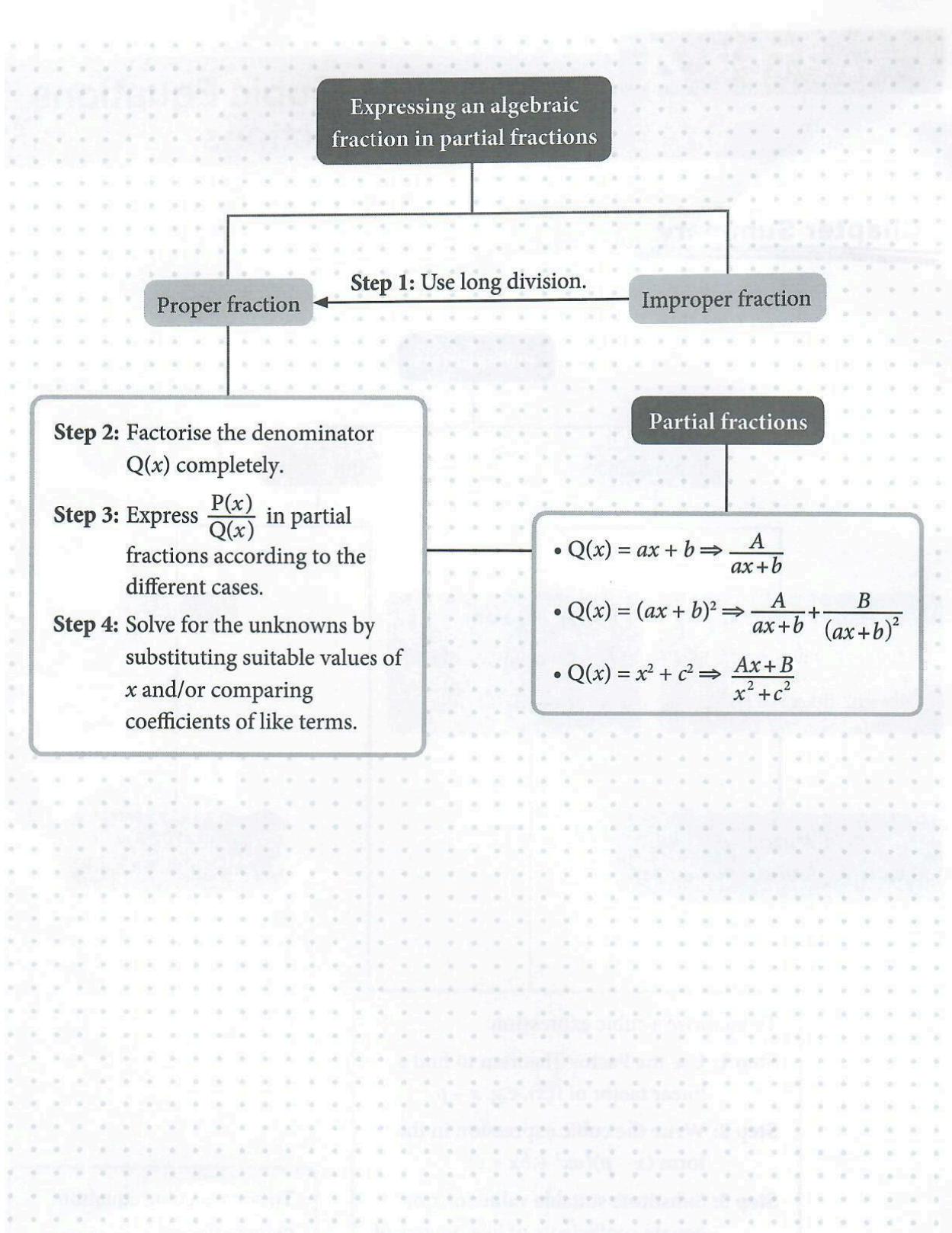


CHAPTER **4** Polynomials, Cubic Equations and Partial Fractions

Chapter Summary





4.1 Polynomials and identities

 Objectives Checklist

- Add, subtract, multiply and divide polynomials
- Find the values of unknowns in identities
- State the Division Algorithm for Polynomials

 Notes and Worked Examples

A polynomial in x is the sum of terms, each of the form ax^n , where n is a non-negative integer.

The degree of a polynomial is the highest power of x .

Type of polynomial	Example of polynomial	Degree
Linear expression	$10x + 9$	1
Quadratic expression	$3 - \frac{1}{2}x^2$	2
Cubic expression	$4x^3 + 7x^2 - 1$	3

The value of a polynomial $P(x)$ at $x = a$ is $P(a)$.

If two polynomials $P(x)$ and $Q(x)$ are **equivalent**, then $P(x) = Q(x)$ is true for all values of x . The equation is known as an **identity**.

To find the unknown coefficients in an identity, we can:

- Substitute suitable values of x (Method 1)
- Equate coefficients of like powers of x (Method 2)

The **Division Algorithm for Polynomials** states that:

$$\text{dividend} = \text{divisor} \times \text{quotient} + \text{remainder}$$

The order of the remainder is always at least one degree less than that of the divisor.

WORKED EXAMPLE 1
Identifying polynomials

Determine whether each of the following is a polynomial. Explain your answer briefly.

(a) $3x^4 + 9x - 20$ (b) $2\sqrt{x} - 8$
 (c) $\frac{4}{5}$ (d) $\frac{1}{x} + 1$

SOLUTION

(a) Yes. The terms in the expression are in the form ax^n , where each value of n is a non-negative integer.

(b) No. $2\sqrt{x} = 2x^{\frac{1}{2}}$ has a fractional exponent.

(c) Yes. $\frac{4}{5}$ is the constant term in a polynomial. $\leftarrow n = 0$

(d) No. $\frac{1}{x} = x^{-1}$ has a negative exponent.

TRY
TUTORIAL 4.1: Question 1
WORKED EXAMPLE 2
Adding and subtracting polynomials

It is given that $P(x) = 2x^3 + 6x^2 - 7x + 3$ and $Q(x) = 4x^2 + 7x - 5$.

(i) Find an expression for each of the following and state its degree.

(a) $P(x) + Q(x)$ (b) $4P(x) - 6Q(x)$

(ii) Show that $4P(-1) - 6Q(-1) = 104$.

SOLUTION

(i) (a) $P(x) + Q(x) = (2x^3 + 6x^2 - 7x + 3) + (4x^2 + 7x - 5)$
 $= 2x^3 + 6x^2 - 7x + 3 + 4x^2 + 7x - 5$
 $= 2x^3 + 10x^2 - 2 \leftarrow \text{Group like terms.}$

Degree of $P(x) + Q(x)$ is 3

(b) $4P(x) - 6Q(x) = 4(2x^3 + 6x^2 - 7x + 3) - 6(4x^2 + 7x - 5)$
 $= 8x^3 + 24x^2 - 28x + 12 - 24x^2 - 42x + 30$
 $= 8x^3 - 70x + 42 \leftarrow \text{Group like terms.}$

Degree of $4P(x) - 6Q(x)$ is 3

(ii) $4P(x) - 6Q(x) = 8x^3 - 70x + 42$

$$\begin{aligned} 4P(-1) - 6Q(-1) &= 8(-1)^3 - 70(-1) + 42 \\ &= 104 \text{ (shown)} \end{aligned}$$

TRY

TUTORIAL 4.1: Question 2

WORKED EXAMPLE 3

Finding the degree of the sum or difference of polynomials

 Suggest a pair of polynomials $P(x)$ and $Q(x)$ for which the degree of $P(x) + Q(x)$ is greater than the degree of $P(x) - Q(x)$.

SOLUTION

A possible pair is $P(x) = 5x^3 + x^2 - 10$ and $Q(x) = 5x^3 - 6x^2$.

$$\begin{aligned} P(x) + Q(x) &= (5x^3 + x^2 - 10) + (5x^3 - 6x^2) \\ &= 5x^3 + x^2 - 10 + 5x^3 - 6x^2 \\ &= 10x^3 - 5x^2 - 10 \end{aligned}$$

Degree of $P(x) + Q(x)$ is 3

$$\begin{aligned} P(x) - Q(x) &= (5x^3 + x^2 - 10) - (5x^3 - 6x^2) \\ &= 5x^3 + x^2 - 10 - 5x^3 + 6x^2 \\ &= 7x^2 - 10 \end{aligned}$$

Degree of $P(x) - Q(x)$ is 2

TRY

TUTORIAL 4.1: Question 3

WORKED EXAMPLE 4
Multiplying polynomials

Expand each of the following.

(a) $(8x + 3)(x^2 - 5x + 1)$

(b) $(4x^2 - x + 7)(2x^2 - 9)$

SOLUTION

$$\begin{aligned} (a) \quad (8x + 3)(x^2 - 5x + 1) &= 8x(x^2 - 5x + 1) + 3(x^2 - 5x + 1) \\ &= 8x^3 - 40x^2 + 8x + 3x^2 - 15x + 3 \\ &= 8x^3 - 37x^2 - 7x + 3 \end{aligned}$$

$$\begin{aligned} (b) \quad (4x^2 - x + 7)(2x^2 - 9) &= 4x^2(2x^2 - 9) - x(2x^2 - 9) + 7(2x^2 - 9) \\ &= 8x^4 - 36x^2 - 2x^3 + 9x + 14x^2 - 63 \\ &= 8x^4 - 2x^3 - 22x^2 + 9x - 63 \end{aligned}$$

TRY
TUTORIAL 4.1: Question 4
WORKED EXAMPLE 5
Multiplying polynomials to find specific terms

Find the coefficient of x^2 in the expansion of $(6x^2 + 3x - 2)(5x^2 - 9x + 4)$.

SOLUTION

$$(6x^2 + 3x - 2)(5x^2 - 9x + 4) \quad \leftarrow \text{Multiply the terms whose products give the terms in } x^2.$$

$$\begin{aligned} \text{Term in } x^2 \text{ is } 6x^2(4) + 3x(-9x) - 2(5x^2) &= 24x^2 - 27x^2 - 10x^2 \\ &= -13x^2 \end{aligned}$$

\therefore Coefficient of x^2 is -13

TRY
TUTORIAL 4.1: Questions 5–7

WORKED
EXAMPLE

6

Finding unknown coefficients in identities

Given that $3x^2 - 11x - 33 = a(x - 4)(x + 2) + b(x + 2) + c$ for all values of x , find the values of a , b and c .

SOLUTION

$$3x^2 - 11x - 33 = a(x - 4)(x + 2) + b(x + 2) + c$$

Method 1: Substitute suitable values of x

$$\text{Let } x = -2: \quad 3(-2)^2 - 11(-2) - 33 = a(0) + b(0) + c \quad \leftarrow \text{Letting } x \text{ be } -2 \text{ leaves us with 1 unknown, } c.$$

$$c = 1$$

$$\text{Let } x = 4: \quad 3(4)^2 - 11(4) - 33 = a(0) + b(4 + 2) + c \quad \leftarrow \text{Letting } x \text{ be } 4 \text{ leaves us with 1 unknown, } b.$$

$$-29 = 6b + 1$$

$$6b = -30$$

$$b = -5$$

$$\text{Let } x = 0: \quad 3(0)^2 - 11(0) - 33 = a(-4)(2) + b(2) + c \quad \leftarrow \text{Letting } x \text{ be } 0 \text{ leaves us with 1 unknown, } a.$$

$$-33 = -8a + (-5)(2) + 1$$

$$-33 = -8a - 9$$

$$8a = 24$$

$$a = 3$$

$$\therefore a = 3, b = -5, c = 1$$

Method 2: Equate coefficients of like powers of x

$$\text{Coefficients of } x^2: \quad 3 = a$$

$$a = 3$$

$$\text{Coefficients of } x: \quad -11 = a(-4 + 2) + b$$

$$-11 = 3(-2) + b$$

$$-11 = -6 + b$$

$$b = -5$$

$$\text{Constant terms:} \quad -33 = a(-8) + b(2) + c$$

$$-33 = 3(-8) - 5(2) + c$$

$$-33 = -24 - 10 + c$$

$$c = 1$$

$$\therefore a = 3, b = -5, c = 1$$

TRY

TUTORIAL 4.1: Question 8

WORKED
EXAMPLE

7

Finding unknown coefficients in identities

Given that $4x^3 - 49x + 60 = (2x - 5)(x + 4)(ax + b)$ for all values of x , find the values of a and b .

SOLUTION

$$4x^3 - 49x + 60 = (2x - 5)(x + 4)(ax + b)$$

Equating coefficients of x^3 ,

$$4 = 2a$$

$$a = 2$$

Let $x = 0$: $0 - 0 + 60 = (-5)(4)(b)$ ← We can use a combination of Methods 1 and 2 to find the values of the unknown coefficients.

$$60 = -20b$$

$$b = -3$$

$$\therefore a = 2, b = -3$$

TRY

TUTORIAL 4.1: Question 9

WORKED EXAMPLE 8
Dividing polynomials

Find the remainder when

(a) $6x^2 + 7x - 8$ is divided by $x - 2$,
 (b) $4x^3 - x + 3$ is divided by $2x + 1$.

SOLUTION

(a)

$$\begin{array}{r}
 \begin{array}{c} 6x + 19 \\ \text{divisor} \longrightarrow x - 2 \end{array} \overline{) 6x^2 + 7x - 8} \begin{array}{l} \leftarrow \text{quotient} \\ \leftarrow \text{dividend} \end{array} \\
 \begin{array}{r} -(6x^2 - 12x) \\ \hline 19x - 8 \end{array} \\
 \begin{array}{r} -(19x - 38) \\ \hline 30 \end{array} \begin{array}{l} \leftarrow \text{remainder} \end{array}
 \end{array}$$

\therefore The remainder is 30. $\leftarrow 6x^2 + 7x - 8 = (x - 2)(6x + 19) + 30$

(b)

$$\begin{array}{r}
 \begin{array}{c} 2x^2 - x \\ \text{divisor} \longrightarrow 2x + 1 \end{array} \overline{) 4x^3 + 0x^2 - x + 3} \begin{array}{l} \leftarrow \text{quotient} \\ \leftarrow \text{dividend} \end{array} \\
 \begin{array}{r} -(4x^3 + 2x^2) \\ \hline -2x^2 - x \end{array} \\
 \begin{array}{r} -(-2x^2 - x) \\ \hline 3 \end{array} \begin{array}{l} \leftarrow \text{remainder} \end{array}
 \end{array}$$

\therefore The remainder is 3. $\leftarrow 4x^3 - x + 3 = (2x + 1)(2x^2 - x) + 3$

TRY
TUTORIAL 4.1: Questions 10, 11

**WORKED
EXAMPLE**
9
Applying the Division Algorithm for Polynomials

It is given that $8x^4 + 10x^3 - 13x^2 + 2 = (4x^2 - x + 1)Q(x) + R(x)$ for all real values of x . Find $Q(x)$ and $R(x)$.

SOLUTION

$$\begin{array}{r}
 2x^2 + 3x - 3 \\
 \hline
 4x^2 - x + 1 \overline{)8x^4 + 10x^3 - 13x^2 + 0x + 2} \\
 \underline{-(8x^4 - 2x^3 + 2x^2)} \\
 \hline
 12x^3 - 15x^2 + 0x \\
 \underline{-(12x^3 - 3x^2 + 3x)} \\
 \hline
 -12x^2 - 3x + 2 \\
 \underline{-(-12x^2 + 3x - 3)} \\
 \hline
 -6x + 5
 \end{array}$$

← Stop dividing when the degree of the remainder is less than that of the divisor.

$$8x^4 + 10x^3 - 13x^2 + 2 = (4x^2 - x + 1)(2x^2 + 3x - 3) + 5 - 6x$$

$$\therefore Q(x) = 2x^2 + 3x - 3 \text{ and } R(x) = 5 - 6x$$

TRY

TUTORIAL 4.1: Questions 12–16

NAME: _____ CLASS: _____ DATE: _____

4.1

1. Determine whether each of the following is a polynomial. Explain your answer briefly.
 - (a) $6 - \frac{1}{2}x$
 - (b) $(3x + 4)^2$
 - (c) $x^2 + 16\sqrt[3]{x}$
 - (d) πx^5
2. It is given that $P(x) = 3x^3 + 10x - 2$ and $Q(x) = 2x^2 - 6x + 9$.
 - (i) Find an expression for each of the following and state its degree.
 - (a) $P(x) + Q(x)$
 - (b) $2P(x) - 5Q(x)$
 - (ii) Show that $2P(-2) - 5Q(-2) = -237$.
3. Suggest a pair of polynomials $P(x)$ and $Q(x)$ for which the degree of $P(x) + Q(x)$ is less than the degree of $P(x) - Q(x)$.
4. Expand each of the following.
 - (a) $(3x + 5)(x^2 - 8x - 7)$
 - (b) $(6x^2 + x + 2)(10 - x^2)$
5. Find the coefficient of x^3 in the expansion of $(5x^2 - x + 1)(2x^2 + 3x - 9)$.
6. Find the value of the constant k for which the coefficient of x^2 in the expansion of $(3x^2 + 4x - k)(7x^2 - 8x + 6)$ is 0.
7. Suggest a quadratic polynomial $f(x)$ for which the product of $2x^2 - 6x - 1$ and $f(x)$ does not contain a term in x^3 .
8. Find the values of the unknowns in each of the following.
 - (a) $A(x + 5)(x - 2) + B(x - 2) = 4x^2 + 8x - 32$
 - (b) $A(3x + 1) + B(1 - 3x) = 10$
 - (c) $10x^2 - 33x - 20 = A(x + 1)(4 - x) + B(4 - x) + C$
 - (d) $A - x^2 = 12 + B(x - 3) + C(x - 3)^2$
9. Given that $5x^3 - 27x^2 - 110x + 48 = (5x - 2)(x + 3)(ax + b)$ for all values of x , find the values of a and b .
10. Find the remainder when $12x^3 + 25x^2 + 3x - 12$ is divided by
 - (a) $x - 1$,
 - (b) $4x + 7$.

11. By using long division, divide $x^4 - x^3 - 9x^2 + 23x - 10$ by $x^2 + 3x - 2$.

12. (i) Divide $12x^3 + 5x^2 + 6x - 8$ by $4x - 1$ and state the remainder.
(ii) Hence, express $12x^3 + 5x^2 + 6x - 8$ in terms of $4x - 1$.

13. It is given that $6x^3 - 10x^2 + 7x - 4 = (2x^2 + 1)Q(x) + R(x)$ for all real values of x . Find $Q(x)$ and $R(x)$.

14. It is given that $-x^4 + 3x^3 + 6x^2 - 4 = (x^2 - 9)Q(x) + Ax + B$, where $Q(x)$ is a polynomial.
(i) State the degree of $Q(x)$.
(ii) Find the values of the constants A and B .

15. Find the quotient and the remainder when $5x^4 + 10x^3y - 6xy^2 - 2y^3$ is divided by $x + 2y$.

16. State whether each of the following is true, false, or if there is insufficient information to conclude. $f(x) \neq g(x)$.
(a) If $f(x)$ and $g(x)$ are polynomials, then $f(x) \times g(x)$ is a polynomial.
(b) If $f(x)$ and $g(x)$ are polynomials, then $f(x) \div g(x)$ is a polynomial.
(c) If $f(x)$ and $g(x)$ are non-polynomials, then $f(x) + g(x)$ is a non-polynomial.
(d) If $f(x)$ and $g(x)$ are non-polynomials, then $f(x) \times g(x)$ is a non-polynomial.

4.2 Remainder and Factor Theorems

 Objectives Checklist

- Use the Remainder Theorem to find the remainder when a polynomial is divided by a linear factor
- Use the Factor Theorem to factorise cubic expressions

 Notes and Worked Examples

The **Remainder Theorem** states that:

If a polynomial $f(x)$ is divided by a linear divisor $ax + b$, the remainder is $f\left(-\frac{b}{a}\right)$.

In particular, if a polynomial $f(x)$ is divided by a linear divisor $x + b$, the remainder is $f(-b)$.

The **Factor Theorem** states that:

$ax + b$ is a factor of a polynomial $f(x) \Leftrightarrow f\left(-\frac{b}{a}\right) = 0$.

If $ax + b$ is a factor of $f(x)$, then $f(x)$ is exactly divisible by $ax + b$.

**WORKED
EXAMPLE**
1
Finding the remainder using the Remainder Theorem

 Find the remainder when $8x^3 - x^2 - 5x + 6$ is divided by

(a) $x - 2$, (b) $2x + 3$.

SOLUTION

 Let $f(x) = 8x^3 - x^2 - 5x + 6$.

$$\begin{aligned} \text{(a)} \quad f(2) &= 8(2)^3 - 2^2 - 5(2) + 6 \\ &= 56 \\ \therefore \text{The remainder is } 56. \end{aligned}$$

$$\begin{aligned} \text{(b)} \quad f\left(-\frac{3}{2}\right) &= 8\left(-\frac{3}{2}\right)^3 - \left(-\frac{3}{2}\right)^2 - 5\left(-\frac{3}{2}\right) + 6 \\ &= -\frac{63}{4} \\ \therefore \text{The remainder is } -\frac{63}{4}. \end{aligned}$$

TRY

TUTORIAL 4.2: Questions 1, 2

**WORKED
EXAMPLE**
2
Finding the value of an unknown using the Remainder Theorem

 The expression $8x^5 - px^3 + x^2 - 3$, where p is a constant, leaves a remainder of -4 when divided by $2x - 1$. Find the value of p .

SOLUTION

 Let $f(x) = 8x^5 - px^3 + x^2 - 3$.

By the Remainder Theorem,

$$\begin{aligned} f\left(\frac{1}{2}\right) &= -4 \\ 8\left(\frac{1}{2}\right)^5 - p\left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^2 - 3 &= -4 \\ \frac{1}{4} - \frac{1}{8}p + \frac{1}{4} - 3 &= -4 \\ \frac{1}{8}p &= \frac{3}{2} \\ p &= 12 \end{aligned}$$

TRY

TUTORIAL 4.2: Questions 3–6

WORKED EXAMPLE 3
Finding the values of unknowns using the Remainder Theorem

The expression $-5x^3 + ax^2 + bx + c$ leaves the same remainder when divided by $x + 2$ or by $x - 1$.

- Show that $a - b = -15$.
- Give an example of the values of a and b which satisfy the conditions found in part (i).

SOLUTION

- Let $f(x) = -5x^3 + ax^2 + bx + c$.

Since $f(-2) = f(1)$,

$$-5(-2)^3 + a(-2)^2 + b(-2) + c = -5(1)^2 + a(1)^2 + b(1) + c$$

$$40 + 4a - 2b + c = -5 + a + b + c$$

$$3a - 3b = -45$$

$$a - b = -15 \text{ (shown)}$$

- A possible pair of values is $a = 5$ and $b = 20$.

TRY

TUTORIAL 4.2: Questions 7, 8

WORKED EXAMPLE 4

Determining whether $ax + b$ is a factor of a polynomial

(a) Determine whether $x - 3$ is a factor of $x^3 + x^2 - 11x - 3$.

(b) Show that $4x + 1$ is not a factor of $4x^3 + 6x - 1$.

SOLUTION

(a) Let $f(x) = x^3 + x^2 - 11x - 3$.

$$\begin{aligned}f(3) &= 3^3 + 3^2 - 11(3) - 3 \\&= 0\end{aligned}$$

\therefore By the Factor Theorem, $x - 3$ is a factor of $x^3 + x^2 - 11x - 3$.

(b) Let $g(x) = 4x^3 + 6x - 1$.

$$\begin{aligned}g\left(-\frac{1}{4}\right) &= 4\left(-\frac{1}{4}\right)^3 + 6\left(-\frac{1}{4}\right) - 1 \\&= -\frac{41}{16}\end{aligned}$$

\therefore Since $g\left(-\frac{1}{4}\right) \neq 0$, $4x + 1$ is not a factor of $4x^3 + 6x - 1$. (shown)

TRY

TUTORIAL 4.2: Questions 9–11

WORKED EXAMPLE

5

Finding the value of an unknown using the Factor Theorem

The expression $px^3 + 10x^2 + 2x + 40$ has a factor $x + 4$. Find the value of p .

SOLUTION

Let $f(x) = px^3 + 10x^2 + 2x + 40$.

By the Factor Theorem,

$$f(-4) = 0$$

$$p(-4)^3 + 10(-4)^2 + 2(-4) + 40 = 0$$

$$-64p + 160 - 8 + 40 = 0$$

$$-64p + 192 = 0$$

$$-64p = -192$$

$$p = 3$$

TRY

TUTORIAL 4.2: Questions 12, 13

WORKED
EXAMPLE

6

Finding the values of unknowns using the Factor Theorem

The expression $ax^3 - 17x^2 + bx + 50$, where a and b are constants, is exactly divisible by $x^2 - 3x - 10$. Find the value of a and of b .

SOLUTION

Let $f(x) = ax^3 - 17x^2 + bx + 50$.

Since $x^2 - 3x - 10 = (x - 5)(x + 2)$, $f(x)$ is divisible by $x - 5$ and $x + 2$.

By the Factor Theorem, $f(5) = 0$ and $f(-2) = 0$.

$$f(5) = a(5)^3 - 17(5)^2 + b(5) + 50 = 0$$

$$125a - 425 + 5b + 50 = 0$$

$$125a + 5b = 375$$

$$25a + b = 75 \quad \text{--- (1)}$$

$$f(-2) = a(-2)^3 - 17(-2)^2 + b(-2) + 50 = 0$$

$$-8a - 68 - 2b + 50 = 0$$

$$8a + 2b = -18$$

$$4a + b = -9 \quad \text{--- (2)}$$

$$(1) - (2):$$

$$21a = 84$$

$$a = 4$$

Substitute $a = 4$ into (2):

$$4(4) + b = -9$$

$$16 + b = -9$$

$$b = -25$$

$$\therefore a = 4, b = -25$$

TRY

TUTORIAL 4.2: Questions 14–16

NAME: _____

CLASS: _____

DATE: _____

4.2

1. Find the remainder when $9x^3 - 2x^2 - 2x + 4$ is divided by
 - (a) $x + 3$,
 - (b) $3x - 1$.

2. Find the remainder when $\frac{1}{2}(5x^2 + 1)(x^2 - 6)$ is divided by
 - (a) $1 - x$,
 - (b) x .

3. When $4x^3 + a(x^2 + x) - 10$ is divided by $2x - 1$, the remainder is $-\frac{29}{4}$. Find the value of a .

4. The remainder is 1 when $2x^7 - (a + 2)x^2 + x + 4$ is divided by $x + 1$. Find the value of a .

5. The function f is defined by $f(x) = 16x^4 + 8ax^3 - 6x^2 - 28x + a$, where a is a constant. When $f(x)$ is divided by $2x + a$, the remainder is 36. Find the possible values of a .

6. The remainder when $\frac{1}{4}ax^3 - 6$ is divided by $2x + 3$ is equal to the remainder when $3x^3 + ax^2 - 7$ is divided by $2x - 1$. Find the value of a .

7. The expression $ax^6 + 4x^3 - bx + 2c$ leaves the same remainder when divided by $x - 2$ or by $x + 1$.
 - (i) Show that $21a - b = -12$.
 - (ii) Give an example of the values of a and b which satisfy the conditions found in part (i).

8. When $px^3 + qx^2 + px + q$ is divided by $2x - 1$, the remainder is twice of that when it is divided by $2x + 1$. Find the value of $\frac{4p}{7q}$.

9. Determine whether $x + 3$ is a factor of $x^3 - 4x^2 - 11x + 28$.

10. Show that $5x - 2$ is a factor of $5x^3 - 7x^2 - 8x + 4$.

11. The function f is defined by $f(x) = x^4 - 9x^2 + kx - 7$, where k is a constant.
 - (i) Given that $x - 3$ is a factor of $f(x)$, find the value of k .
 - (ii) Using the value of k found in part (i), show that $x + 3$ is not a factor of $f(x)$.

12. The expression $x^3 + px^2 + 5x - 50$ has a factor $x + 5$. Find the value of p .

13. The expression $\frac{1}{3}x^3 - px^2 + 4$ has a factor $2x + 3$.

(i) Find the value of p .

(ii) Hence, find the remainder when $\frac{1}{3}x^3 - px^2 + 4$ is divided by x .

14. The expression $ax^3 + 10x^2 + bx - 24$, where a and b are constants, is exactly divisible by $x^2 + 7x - 8$. Find the value of a and of b .

15. The expressions $14x^3 + px^2 - 11x + q$ and $2x^2 + 3x - 5$ have common factors. Find the values of p and q .

16. Two factors of a polynomial of degree 3 are $4x + 1$ and $x - 5$. When the polynomial is divided by $x - 3$, the remainder is -52 . Find a possible expression for this polynomial.

4.3 Cubic expressions, equations and identities

 Objectives Checklist

- Apply the cubic identities $a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)$
- State the types of roots of cubic equations
- Solve cubic equations and problems involving cubic equations

 Notes and Worked Examples

A cubic expression in x is a polynomial of degree 3, of the form $ax^3 + bx^2 + cx + d$, where $a \neq 0$.

We use the Factor Theorem to factorise a cubic expression:

Step 1: Use the Factor Theorem to find a linear factor of $f(x)$, e.g. $x - p$.

Step 2: Write the cubic expression in the form $(x - p)(ax^2 + bx + c)$.

Step 3: Substitute suitable values of x or equate coefficients of like powers of x to find the values of a , b and c .

Step 4: Factorise $ax^2 + bx + c$ if possible.

To solve a cubic equation:

Step 5: Equate each factor of the cubic expression to 0.

The sum and difference of cubes are:

- $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$
- $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

WORKED
EXAMPLE

1

Factorising a cubic expression involving $a^3 \pm b^3$

Factorise each of the following expressions.

(a) $x^3 + 8$

(b) $x^3 - 8$

(c) $27x^3 + 64y^6$

(d) $2(x + 5)^3 - 250x^3$

SOLUTION

(a) $x^3 + 8 = x^3 + 2^3$

$$= (x + 2)(x^2 - 2x + 4)$$

(b) $x^3 - 8 = x^3 - 2^3$

$$= (x - 2)(x^2 + 2x + 4)$$

(c) $27x^3 + 64y^6 = (3x)^3 + (4y^2)^3$

$$= (3x + 4y^2)(9x^2 - 12xy^2 + 16y^4)$$

(d) $2(x + 5)^3 - 250x^3 = 2[(x + 5)^3 - 125x^3]$

$$= 2[(x + 5)^3 - (5x)^3]$$

$$= 2(x + 5 - 5x)[(x + 5)^2 + (x + 5)(5x) + (5x)^2]$$

$$= 2(5 - 4x)(x^2 + 10x + 25 + 5x^2 + 25x + 25x^2)$$

$$= 2(5 - 4x)(31x^2 + 35x + 25)$$

TRY

TUTORIAL 4.3: Questions 1–3

WORKED EXAMPLE 2
Factorising a cubic expression

Factorise $4x^3 + 13x^2 - 37x - 10$ completely.

SOLUTION

Let $f(x) = 4x^3 + 13x^2 - 37x - 10$.

$$\begin{aligned} f(2) &= 4(2)^3 + 13(2)^2 - 37(2) - 10 \quad \leftarrow \text{Find a value of } p \text{ such that } f(p) = 0. \\ &= 0 \end{aligned}$$

\therefore By the Factor Theorem, $x - 2$ is a factor of $f(x)$.

$$4x^3 + 13x^2 - 37x - 10 = (x - 2)(4x^2 + bx + 5)$$

Equating coefficients of x^2 , \leftarrow Equating coefficients of x will also yield $b = 21$.

$$13 = b - 8$$

$$b = 21$$

$$\begin{aligned} 4x^3 + 13x^2 - 37x - 10 &= (x - 2)(4x^2 + 21x + 5) \\ &= (4x + 1)(x + 5)(x - 2) \end{aligned}$$

TRY
TUTORIAL 4.3: Questions 4–7
WORKED EXAMPLE 3
Solving a cubic equation

Solve each of the following equations, leaving your answer in surd form where necessary.

(a) $x^3 - 8x^2 + 9x + 18 = 0$

(b) $3x^3 + 4x^2 = 16x + 8$

SOLUTION

(a) Let $f(x) = x^3 - 8x^2 + 9x + 18$.

$$\begin{aligned} f(-1) &= (-1)^3 - 8(-1)^2 + 9(-1) + 18 \\ &= 0 \end{aligned}$$

\therefore By the Factor Theorem, $x + 1$ is a factor of $f(x)$.

$$x^3 - 8x^2 + 9x + 18 = (x + 1)(x^2 + bx + 18)$$

Equating coefficients of x^2 , \leftarrow Equating coefficients of x will also yield $b = -9$.

$$-8 = b + 1$$

$$b = -9$$

$$\begin{aligned} x^3 - 8x^2 + 9x + 18 &= (x + 1)(x^2 - 9x + 18) \\ &= (x + 1)(x - 3)(x - 6) \end{aligned}$$

When $f(x) = 0$,

$$(x + 1)(x - 3)(x - 6) = 0$$

$$x = -1 \quad \text{or} \quad x = 3 \quad \text{or} \quad x = 6$$

$$\therefore x = -1 \text{ or } x = 3 \text{ or } x = 6$$

(b) $3x^3 + 4x^2 = 16x + 8$

$$3x^3 + 4x^2 - 16x - 8 = 0$$

$$\text{Let } g(x) = 3x^3 + 4x^2 - 16x - 8.$$

$$g(2) = 3(2)^3 + 4(2)^2 - 16(2) - 8$$

$$= 0$$

∴ By the Factor Theorem, $x - 2$ is a factor of $g(x)$.

$$3x^3 + 4x^2 - 16x - 8 = (x - 2)(3x^2 + bx + 4)$$

Equating coefficients of x , ← Equating coefficients of x^2 will also yield $b = 10$.

$$-16 = 4 - 2b$$

$$2b = 20$$

$$b = 10$$

$$3x^3 + 4x^2 - 16x - 8 = (x - 2)(3x^2 + 10x + 4)$$

When $g(x) = 0$,

$$(x - 2)(3x^2 + 10x + 4) = 0$$

$$x = 2 \quad \text{or} \quad x = \frac{-10 \pm \sqrt{10^2 - 4(3)(4)}}{2(3)}$$

$$= \frac{-10 \pm \sqrt{52}}{6}$$

$$= \frac{-10 \pm 2\sqrt{13}}{6}$$

$$= \frac{-5 \pm \sqrt{13}}{3}$$

$$\therefore x = 2 \text{ or } x = \frac{\sqrt{13} - 5}{3} \text{ or } x = \frac{-\sqrt{13} - 5}{3}$$

TRY

TUTORIAL 4.3: Questions 8, 9

WORKED
EXAMPLE

4

Solving a cubic equation

The equation of a polynomial is given by $p(x) = 25x^3 + 19x - 4$.

- Find the remainder when $p(x)$ is divided by $x + 3$.
- Show that $5x - 1$ is a factor of $p(x)$.
- Show that the equation $p(x) = 0$ has only one real root.
- Use your answers to parts (ii) and (iii) to solve the equation $5^{3y+2} + 19(5^y) = 4$.

SOLUTION

(i) $p(x) = 25x^3 + 19x - 4$

$$\begin{aligned} p(-3) &= 25(-3)^3 + 19(-3) - 4 \\ &= -736 \end{aligned}$$

\therefore The remainder is **-736**.

(ii) $p\left(\frac{1}{5}\right) = 25\left(\frac{1}{5}\right)^3 + 19\left(\frac{1}{5}\right) - 4$
 $= 0$

\therefore By the Factor Theorem, $5x - 1$ is a factor of $25x^3 + 19x - 4$. (shown)

(iii) $25x^3 + 19x - 4 = (5x - 1)(5x^2 + bx + 4)$

Equating coefficients of x^2 , \leftarrow Equating coefficients of x will also yield $b = 1$.

$$0 = 5b - 5$$

$$5b = 5$$

$$b = 1$$

$$25x^3 + 19x - 4 = (5x - 1)(5x^2 + x + 4)$$

When $p(x) = 0$,

$$(5x - 1)(5x^2 + x + 4) = 0$$

$$x = \frac{1}{5} \quad \text{or} \quad 5x^2 + x + 4 = 0$$

$$\text{Discriminant} = 1^2 - 4(5)(4)$$

$$= -79 < 0$$

$\therefore p(x) = 0$ has only one real root. (shown)

(iv) $5^{3y+2} + 19(5^y) = 4$

$$25(5^y)^3 + 19(5^y) - 4 = 0 \leftarrow$$

From (iii),

$$5^y = \frac{1}{5}$$

$$= 5^{-1}$$

$$y = -1$$

Manipulate the equation such that it is in the same form as $p(x) = 0$.

TRY

TUTORIAL 4.3: Questions 10–14

NAME: _____ CLASS: _____ DATE: _____



4.3

1. Factorise each of the following expressions.
 - (a) $x^3 + 27$
 - (b) $x^3 - 1000$
 - (c) $64x^3 + y^6$
 - (d) $x^6 - 125y^9$
 - (e) $(2x + y)^3 + (2x - y)^3$
 - (f) $2(x - y)^3 - 16y^3$

2. (i) Show that $a - b$ is a factor of $a^3 - b^3$.
 (ii) Hence, factorise $a^3 - b^3$.
 (iii) Using your answer in part (ii), factorise $8x^6 - 343y^{12}$.

3. (i) Using the substitution $u = 27x^3$, or otherwise, express $729x^6 - 64$ as the product of two factors.
 (ii) Hence, express $729x^6 - 64$ as the product of four factors with integer coefficients.

4. Factorise each of the following expressions completely.
 - (a) $x^3 - 6x^2 + 11x - 6$
 - (b) $x^3 + 3x^2 - 24x - 80$
 - (c) $5x^3 + 16x^2 - x - 12$
 - (d) $-14x^3 - 9x^2 + 32x - 12$

5. The polynomial $f(x)$ is given by $f(x) = 5x^3 + 14x^2 - 23x + 4$.
 - (i) Show that $5x - 1$ is a factor of $f(x)$.
 - (ii) Express $f(x)$ as a product of three linear factors.

6. (i) Show that $x + 3$ is a factor of $x^3 - 3x^2 - 10x + 24$.
 (ii) Factorise $x^3 - 3x^2 - 10x + 24$ completely.

7. The polynomial $f(x)$ is given by $f(x) = 6x^3 - 11x^2 - 50x - 8$.
 - (i) Find the remainder when $f(x)$ is divided by x .
 - (ii) Show that $(x - 4)(x + 2)$ is a factor of $f(x)$.
 - (iii) Express $f(x)$ as a product of three linear factors.

8. Solve each of the following equations, leaving your answer in surd form where necessary.
 - (a) $x^3 - 7x^2 - 10x + 16 = 0$
 - (b) $9x^3 - 30x^2 - 23x - 4 = 0$
 - (c) $8x^3 - 12x^2 + 6x - 1 = 0$
 - (d) $4x^3 - x^2 - 28x - 15 = 0$

9. (i) Find the value of a and of b for which $6x^2 - 5x + 1$ is a factor of $6x^4 + x^3 + a(x^2 - x) + b$.
 (ii) Using the values of a and b found in part (i), solve the equation

$$6x^4 + x^3 + a(x^2 - x) + b = 0.$$

10. The equation of a polynomial is given by $p(x) = 4x^3 + 7x^2 + 18x - 5$.

(i) Find the remainder when $p(x)$ is divided by $x + 3$.
 (ii) Show that $4x - 1$ is a factor of $p(x)$.
 (iii) Show that the equation $p(x) = 0$ has only one real root.
 (iv) Use your answers to parts (ii) and (iii) to solve the equation

$$2^{3y+2} + 7(2^{2y}) + 9(2^{y+1}) = 5.$$

11. Factorise $125x^3 - 27$ and hence prove that $x^3 = \frac{27}{125}$ has only one real solution.

12. The function $f(x) = x^3 + ax^2 + x + b$, where a and b are constants, is exactly divisible by $x + 5$.

Given that $f(x)$ leaves a remainder of 26 when divided by $x + 4$,

(i) find the value of a and of b ,
 (ii) determine, showing all necessary working, the number of real roots of the equation $f(x) = 0$.

13. (i) Solve the equation $x^3 + 3x^2 - 6x - 8 = 0$.

(ii) On the same diagram, sketch the curve $y = x^3 + 3x^2 - 4x$ and the line $y = 2x + 8$. Indicate clearly the coordinates of the points of intersection.

(iii) The equation $x^3 + 3x^2 - 4x = ax + b$ has exactly one real root. Suggest a pair of values of a and b .

14. The term containing the highest power of x in the polynomial $f(x)$ is $3x^4$. Two of the roots of the equation $f(x) = 0$ are -1 and 4 . Given that $x^2 - 3x + 6$ is a quadratic factor of $f(x)$, find

(i) an expression for $f(x)$ in descending powers of x ,
 (ii) the number of real roots of the equation $f(x) = 0$, justifying your answer.

The straight line L meets the curve $y = f(x)$ at one point only.

(iii) Given that L is not a tangent to the curve, what can be deduced about L ?

4.4 Partial fractions

Objectives Checklist

- Express algebraic fractions in partial fractions

Notes and Worked Examples

An algebraic fraction is of the form $\frac{P(x)}{Q(x)}$, where $P(x)$ and $Q(x)$ are polynomials and $Q(x) \neq 0$.

If the degree of $P(x)$ is less than the degree of $Q(x)$, then $\frac{P(x)}{Q(x)}$ is a **proper fraction**.

If the degree of $P(x)$ is greater than or equal to the degree of $Q(x)$, then $\frac{P(x)}{Q(x)}$ is an **improper fraction**.

To express an algebraic fraction in partial fractions:

Step 1: If the algebraic fraction is an improper fraction, use long division to express it as the sum of a polynomial and a proper fraction $\frac{P(x)}{Q(x)}$, then consider the proper fraction in the next steps.

Step 2: Factorise the denominator $Q(x)$ completely.

Step 3: Express $\frac{P(x)}{Q(x)}$ in partial fractions according to the table below.

Step 4: Solve for the unknowns by substituting suitable values of x and/or comparing coefficients of like terms.

Case	Denominator contains	Corresponding partial fraction	Example
1	linear factor $ax + b$	$\frac{A}{ax+b}$	$\frac{x-10}{(x+4)(x-3)} = \frac{2}{x+4} - \frac{1}{x-3}$
2	repeated linear factor $(ax + b)^2$	$\frac{A}{ax+b} + \frac{B}{(ax+b)^2}$	$\frac{2x+1}{(2x-5)^2} = \frac{1}{2x-5} + \frac{6}{(2x-5)^2}$
3	quadratic factor $x^2 + c^2$ (which cannot be factorised)	$\frac{Ax+B}{x^2+c^2}$	$\frac{14-11x}{(3x-2)(x^2+4)} = \frac{3}{2(3x-2)} - \frac{x+8}{2(x^2+4)}$

**WORKED
EXAMPLE**
1
Proper fraction with distinct linear factors in the denominator

 Express $\frac{x-10}{x^2+x-12}$ in partial fractions.

SOLUTION

$$\frac{x-10}{x^2+x-12} = \frac{x-10}{(x+4)(x-3)} \quad \leftarrow \text{Factorise the denominator.}$$

Let $\frac{x-10}{(x+4)(x-3)} = \frac{A}{x+4} + \frac{B}{x-3}$.

$$x-10 = A(x-3) + B(x+4) \quad \leftarrow \text{Multiply throughout by } (x+4)(x-3).$$

Let $x = -4$: $-4-10 = A(-4-3) + B(0) \leftarrow \text{Letting } x \text{ be } -4 \text{ leaves us with 1 unknown, } A.$

$$-14 = -7A$$

$$A = 2$$

Let $x = 3$: $3-10 = A(0) + B(3+4) \quad \leftarrow \text{Alternatively, equate the coefficients of } x: 1 = A + B$

$$-7 = 7B$$

$$B = -1$$

$$\therefore \frac{x-10}{x^2+x-12} = \frac{2}{x+4} - \frac{1}{x-3}$$

TRY
TUTORIAL 4.4: Question 1

WORKED EXAMPLE 2

Proper fraction with repeated linear factors in the denominator

 Express $\frac{2x+1}{(2x-5)^2}$ in partial fractions.

SOLUTION

$$\frac{2x+1}{(2x-5)^2} = \frac{A}{2x-5} + \frac{B}{(2x-5)^2}$$

$$2x+1 = A(2x-5) + B \quad \text{Multiply throughout by } (2x-5)^2.$$

$$\text{Let } x = \frac{5}{2}: \quad 2\left(\frac{5}{2}\right) + 1 = A(0) + B \quad \text{Letting } x \text{ be } \frac{5}{2} \text{ leaves us with 1 unknown, } B.$$

$$6 = B$$

$$B = 6$$

$$\text{Let } x = 0: \quad 2(0) + 1 = A(-5) + B \quad \text{Alternatively, equate the coefficients of } x: 2 = 2A$$

$$1 = -5A + 6$$

$$5A = 5$$

$$A = 1$$

$$\therefore \frac{2x+1}{(2x-5)^2} = \frac{1}{2x-5} + \frac{6}{(2x-5)^2}$$

TRY

TUTORIAL 4.4: Question 2

**WORKED
EXAMPLE 3**

Proper fraction with repeated linear factors in the denominator

 Express $\frac{2x^2+6x+7}{(x-2)(x+1)^2}$ in partial fractions.

SOLUTION

Let $\frac{2x^2+6x+7}{(x-2)(x+1)^2} = \frac{A}{x-2} + \frac{B}{x+1} + \frac{C}{(x+1)^2}$.

$$2x^2 + 6x + 7 = A(x+1)^2 + B(x-2)(x+1) + C(x-2) \quad \leftarrow \text{Multiply throughout by } (x-2)(x+1)^2.$$

$$\begin{aligned} \text{Let } x = 2: \quad 2(2)^2 + 6(2) + 7 &= A(2+1)^2 + B(0) + C(0) \quad \leftarrow \text{Letting } x \text{ be 2 leaves us with 1 unknown, } A. \\ 27 &= 9A \\ A &= 3 \end{aligned}$$

$$\begin{aligned} \text{Let } x = -1: \quad 2(-1)^2 + 6(-1) + 7 &= A(0) + B(0) + C(-1-2) \quad \leftarrow \text{Letting } x \text{ be -1 leaves us with 1 unknown, } C. \\ 3 &= -3C \\ C &= -1 \end{aligned}$$

$$\begin{aligned} \text{Let } x = 0: \quad 0 + 0 + 7 &= A(1)^2 + B(-2)(1) + C(-2) \quad \leftarrow \text{Letting } x \text{ be 0 leaves us with 1 unknown, } B. \\ 7 &= A - 2B - 2C \\ 7 &= 3 - 2B - 2(-1) \\ 2B &= -2 \\ B &= -1 \end{aligned}$$

$$\therefore \frac{2x^2+6x+7}{(x-2)(x+1)^2} = \frac{3}{x-2} - \frac{1}{x+1} - \frac{1}{(x+1)^2}$$

TRY

TUTORIAL 4.4 Questions 3, 5

WORKED EXAMPLE 4

Proper fraction with quadratic factor (which cannot be factorised) in the denominator

Express $\frac{14-11x}{(3x-2)(x^2+4)}$ in partial fractions.

SOLUTION

$$\text{Let } \frac{14-11x}{(3x-2)(x^2+4)} = \frac{A}{3x-2} + \frac{Bx+C}{x^2+4}. \quad \leftarrow x^2 + 4 \neq (x+2)^2$$

$14 - 11x = A(x^2 + 4) + (Bx + C)(3x - 2)$ \leftarrow Multiply throughout by $(3x - 2)(x^2 + 4)$.

$$\text{Let } x = \frac{2}{3}: \quad 14 - 11\left(\frac{2}{3}\right) = A\left[\left(\frac{2}{3}\right)^2 + 4\right] + 0 \quad \leftarrow \text{Letting } x \text{ be } \frac{2}{3} \text{ leaves us with 1 unknown, } A.$$

$$\frac{20}{3} = \frac{40}{9}A$$

$$A = \frac{3}{2}$$

$$\text{Let } x = 0: \quad 14 - 11(0) = \frac{3}{2}(0+4) + C(-2) \quad \leftarrow \text{Letting } x \text{ be 0 leaves us with 1 unknown, } C.$$

$$14 = 6 - 2C$$

$$2C = -8$$

$$C = -4$$

Equating the coefficients of x^2 ,

$$0 = A + 3B$$

$$0 = \frac{3}{2} + 3B$$

$$3B = -\frac{3}{2}$$

$$B = -\frac{1}{2}$$

$$\begin{aligned} \therefore \frac{14-11x}{(3x-2)(x^2+4)} &= \frac{\frac{3}{2}}{3x-2} + \frac{-\frac{1}{2}x-4}{x^2+4} \\ &= \frac{3}{2(3x-2)} - \frac{x+8}{2(x^2+4)} \end{aligned}$$

TRY

TUTORIAL 4.4: Question 4

WORKED EXAMPLE 5

Expressing an improper fraction as the sum of a polynomial and partial fractions

Express $\frac{5x^3+9x^2-40x-2}{(x+4)(x-2)}$ as the sum of a polynomial and 2 partial fractions.

SOLUTION

$$\frac{5x^3+9x^2-40x-2}{(x+4)(x-2)} = \frac{5x^3+9x^2-40x-2}{x^2+2x-8} \quad \begin{array}{l} \text{Degree of numerator} > \\ \text{Degree of denominator} \end{array}$$

$$\begin{array}{r} 5x - 1 \\ x^2 + 2x - 8 \overline{) 5x^3 + 9x^2 - 40x - 2} \\ - (5x^3 + 10x^2 - 40x) \\ \hline -x^2 + 0x - 2 \\ - (-x^2 - 2x + 8) \\ \hline 2x - 10 \end{array}$$

$$\therefore \frac{5x^3+9x^2-40x-2}{(x+4)(x-2)} = 5x-1 + \frac{2x-10}{(x+4)(x-2)}$$

$$\text{Let } \frac{2x-10}{(x+4)(x-2)} = \frac{A}{x+4} + \frac{B}{x-2}.$$

$$2x-10 = A(x-2) + B(x+4) \quad \leftarrow \text{Multiply throughout by } (x+4)(x-2).$$

$$\text{Let } x = -4: \quad 2(-4) - 10 = A(-4-2) + B(0) \quad \leftarrow \text{Letting } x \text{ be } -4 \text{ leaves us with 1 unknown, } A.$$

$$-18 = -6A$$

$$A = 3$$

$$\text{Let } x = 2: \quad 2(2) - 10 = A(0) + B(2+4) \quad \leftarrow \text{Alternatively, equate the coefficients of } x:$$

$$-6 = 6B$$

$$2 = A + B$$

$$B = -1$$

$$\therefore \frac{2x-10}{(x+4)(x-2)} = \frac{3}{x+4} - \frac{1}{x-2}$$

$$\therefore \frac{5x^3+9x^2-40x-2}{(x+4)(x-2)} = 5x-1 + \frac{3}{x+4} - \frac{1}{x-2}$$

TRY

TUTORIAL 4.4: Questions 6–10

NAME: _____ CLASS: _____ DATE: _____

4.4

1. Express each of the following in partial fractions.

(a) $\frac{23x+4}{(3x-1)(x+2)}$

(b) $\frac{17}{(8x-3)(4x+7)}$

(c) $\frac{5x-26}{x^2-4}$

(d) $\frac{1}{30x^2+6x}$

2. Express each of the following in partial fractions.

(a) $\frac{12x+14}{(4x+7)^2}$

(b) $\frac{40x-23}{25x^2-30x+9}$

3. Express each of the following in partial fractions.

(a) $\frac{x^2-24x-27}{x^2(x-9)}$

(b) $\frac{x^2-42x+159}{(x+3)(x-4)^2}$

4. Express each of the following in partial fractions.

(a) $\frac{2x^2+x+2}{x(x^2+1)}$

(b) $\frac{2x-4}{(x^2+4)(x+2)}$

(c) $\frac{14x^2-7x+19}{(3x-1)(x^2+9)}$

(d) $\frac{35-8x^2}{5x^3+25x}$

5. Express $\frac{(x+4)^2}{x^2(x-4)}$ as the sum of three partial fractions.

6. Express each of the following as the sum of a polynomial and a proper fraction.

(a) $\frac{8x^2+18x-57}{(2x+7)(x-2)}$

(b) $\frac{9x^3+3x^2}{9x^2-6x+1}$

7. Express $\frac{2x^2-59}{x^2-x-20}$ as the sum of a polynomial and partial fractions.

8. (i) Using long division, divide $x^3 - 2x^2 - 12x - 15$ by $9 - x^2$.

(ii) Hence, express $\frac{15+12x+2x^2-x^3}{x^2-9}$ as the sum of a polynomial and partial fractions.

9. (i) Show that $x - 4$ is a factor of $x^3 - 4x^2 + 16x - 64$.

(ii) Express $\frac{3x^3-13x^2+32x-272}{x^3-4x^2+16x-64}$ as the sum of a polynomial and partial fractions.

10. Aaron wrote that $\frac{x^2-x+12}{(x+1)(x^2+5)}$ is equivalent to $\frac{7}{x+1} - \frac{4x-1}{x^2+5}$.

- (i) Show how it is possible to verify that Aaron is incorrect without finding the partial fractions of $\frac{x^2-x+12}{(x+1)(x^2+5)}$.
- (ii) Find the correct partial fractions of $\frac{x^2-x+12}{(x+1)(x^2+5)}$.

NAME: _____ CLASS: _____ DATE: _____

Quick Test 4

[Total marks: 25]

1. A polynomial $f(x)$ is such that, when it is divided by $x + 1$ and $3x - 4$, the remainders are -5 and 2 respectively. Find the remainder when $f(x)$ is divided by $3x^2 - x - 4$. [4]

2. The function $f(x)$ is defined by $f(x) = x^3 + ax^2 + bx + 16$ for all real x . Given that $x + 4$ is a factor of $f(x)$ and that when $f(x)$ is divided by $x + 3$ the remainder is 1 ,
 - (i) find the value of each of the constants a and b , [4]
 - (ii) express $f(x)$ as the product of linear factors. [3]
 - (iii) Hence, find the number of real roots of the equation $x^6 + ax^4 + bx^2 + 16 = 0$. [2]

3. Given that $f(x) = 3x^3 - 17x^2 + 18x + 8$,

- find the remainder when $f(x)$ is divided by $x + 6$, [2]
- show that $x - 4$ is a factor of $f(x)$ and hence solve the equation $f(x) = 0$. [4]

4. (i) By using long division, divide $2x^3 - x^2 + 8x - 4$ by $2x - 1$. [1]

(ii) Express $\frac{9x+4}{2x^3-x^2+8x-4}$ in partial fractions. [5]