

CHAPTER **8**

LEVEL
ONLY

**Applications of Straight
Line Graphs**

Chapter Summary

Applications of straight line graphs

x and y are linearly related

$$y = mx + c$$

x and y are non-linearly related

$$y = mX + c$$

or

$$Y - Y_1 = m(X - X_1)$$

Some useful conversions:

	Non-linear equation	Linear equation
1	$y = ka^x$	$\lg y = (\lg a)x + \lg k$, where $Y = \lg y$, $X = x$, gradient = $\lg a$, Y-intercept = $\lg k$
2	$y = ax^n$	$\lg y = n \lg x + \lg a$, where $Y = \lg y$, $X = \lg x$, gradient = n , Y-intercept = $\lg a$
3	$y = ae^{kx}$	$\ln y = kx + \ln a$, where $Y = \ln y$, $X = x$, gradient = k , Y-intercept = $\ln a$
4	$y = ax^2 + bx$	$\frac{y}{x} = ax + b$, where $Y = \frac{y}{x}$, $X = x$, gradient = a , Y-intercept = b $\frac{y}{x^2} = \frac{b}{x} + a$, where $Y = \frac{y}{x^2}$, $X = \frac{1}{x}$, gradient = b , Y-intercept = a
5	$\frac{a}{x} + \frac{b}{y} = 1$	$\frac{1}{y} = -\frac{a}{b}\left(\frac{1}{x}\right) + \frac{1}{b}$, where $Y = \frac{1}{y}$, $X = \frac{1}{x}$, gradient = $-\frac{a}{b}$, Y-intercept = $\frac{1}{b}$

8.1

Converting a non-linear equation into
the linear form Objectives Checklist

- Convert a non-linear equation into the linear form
- Convert a linear form into a non-linear equation

 Notes and Worked Examples

If a line has a gradient m and y -intercept c , then:

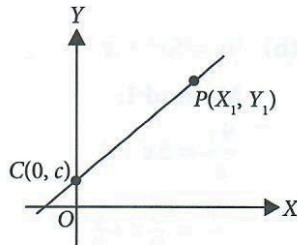
$$\text{Equation of a non-vertical line: } y = mx + c$$

When a graph of Y against X is drawn, then:

$$\text{Equation of a non-vertical line: } Y = mX + c$$

or

$$Y - Y_1 = m(X - X_1)$$



**WORKED
EXAMPLE**
1
Converting a non-linear equation into the linear form

Express each of the following equations in the form $Y = mX + c$, where X and Y are functions of x and/or y , and m and c are constants. State the value of m and of c . For parts (b) and (c), show two methods of obtaining the answer.

(a) $y = x^3 - 4$

(c) $6x + 2y = xy$

(b) $9y = 5x^2 + x$

(d) $y^2 = \frac{8}{\sqrt{x-3}}$

SOLUTION

(a) $y = x^3 - 4$

$$Y = mX + c$$

$$\therefore m = 1 \text{ and } c = -4$$

(b) $9y = 5x^2 + x$

Method 1:

$$\frac{9y}{x} = 5x + 1$$

$$\frac{y}{x} = \frac{5}{9}x + \frac{1}{9}$$

$$Y = mX + c$$

$$\therefore m = \frac{5}{9}, c = \frac{1}{9}$$

Method 2:

$$\frac{9y}{x^2} = 5 + \frac{1}{x}$$

$$\frac{y}{x^2} = \frac{1}{9} \left(\frac{1}{x} \right) + \frac{5}{9}$$

$$Y = mX + c$$

$$\therefore m = \frac{1}{9}, c = \frac{5}{9}$$

(c) $6x + 2y = xy$

Method 1:

$$\frac{6x}{xy} + \frac{2y}{xy} = 1$$

$$\frac{6}{y} + \frac{2}{x} = 1$$

$$\frac{6}{y} = -\frac{2}{x} + 1$$

$$\frac{1}{y} = -\frac{1}{3x} + \frac{1}{6}$$

$$\frac{1}{y} = -\frac{1}{3} \left(\frac{1}{x} \right) + \frac{1}{6}$$

$$Y = mX + c$$

$$\therefore m = -\frac{1}{3}, c = \frac{1}{6}$$

Method 2:

$$\frac{6x}{x} + \frac{2y}{x} = y$$

$$6 + \frac{2y}{x} = y$$

$$y = 2 \left(\frac{y}{x} \right) + 6$$

$$Y = mX + c$$

$$\therefore m = 2, c = 6$$

$$\begin{aligned}
 \text{(d)} \quad y^2 &= \frac{8}{\sqrt{x}-3} \\
 \frac{1}{y^2} &= \frac{1}{8} \sqrt{x} - \frac{3}{8} \\
 Y &= mX + c \\
 \therefore m &= \frac{1}{8}, c = -\frac{3}{8}
 \end{aligned}$$

TRY

TUTORIAL 8.1: Questions 1, 2

WORKED EXAMPLE 2

Finding the values of unknowns in a non-linear equation

The variables x and y are related by the equation $y = p\sqrt{x} + \frac{q}{\sqrt{x}}$, where p and q are constants. When a graph of $\frac{y}{\sqrt{x}}$ is plotted against $\frac{1}{x}$, the resulting line has a gradient of $-\frac{1}{3}$ and an intercept of 2 on the $\frac{y}{\sqrt{x}}$ -axis. Find the value of p and of q .

SOLUTION
Method 1:

$$Y = mX + c \quad \text{--- (1)}$$

Substitute $m = -\frac{1}{3}$ and $c = 2$ into (1):

$$Y = -\frac{1}{3}X + 2$$

Let $Y = \frac{y}{\sqrt{x}}$ and $X = \frac{1}{x}$:

$$\frac{y}{\sqrt{x}} = -\frac{1}{3}\left(\frac{1}{x}\right) + 2$$

$$\frac{y}{\sqrt{x}} = -\frac{1}{3x} + 2$$

$$y = -\frac{1}{3\sqrt{x}} + 2\sqrt{x} \quad \leftarrow \text{Multiply by } \sqrt{x} \text{ throughout.}$$

$$y = 2\sqrt{x} - \frac{1}{3\sqrt{x}}$$

$$\therefore p = 2, q = -\frac{1}{3}$$

Method 2:

$$y = p\sqrt{x} + \frac{q}{\sqrt{x}}$$

$$\frac{y}{\sqrt{x}} = p + \frac{q}{x} \quad \leftarrow \text{Divide by } \sqrt{x} \text{ throughout.}$$

$$\frac{y}{\sqrt{x}} = \frac{q}{x} + p$$

$$Y = mX + c$$

Since $m = q$ and $c = p$, then $p = 2$ and $q = -\frac{1}{3}$.

TRY

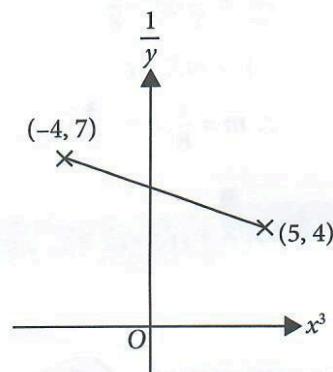
TUTORIAL 8.1: Questions 3–5

WORKED
EXAMPLE

3

Converting a linear form into a non-linear equation

The diagram shows part of a straight line graph of $\frac{1}{y}$ against x^3 , passing through the points $(-4, 7)$ and $(5, 4)$. Express y in terms of x .



SOLUTION

$$\text{Gradient} = \frac{4-7}{5-(-4)} \leftarrow \text{Gradient} \neq \frac{\frac{1}{4}-\frac{1}{7}}{5^3-(-4)^3}$$

$$= -\frac{1}{3}$$

$$Y = mX + c \quad \text{--- (1)}$$

$$\text{Substitute } m = -\frac{1}{3}, X = 5 \text{ and } Y = 4 \text{ into (1): } \leftarrow X \neq 5^3, Y \neq \frac{1}{4}$$

$$4 = -\frac{1}{3}(5) + c$$

$$4 = -\frac{5}{3} + c$$

$$c = \frac{17}{3}$$

Let $Y = \frac{1}{y}$ and $X = x^3$:

$$\frac{1}{y} = -\frac{1}{3}x^3 + \frac{17}{3}$$

$$\frac{1}{y} = \frac{17-x^3}{3}$$

$$y = \frac{3}{17-x^3}$$

TRY

TUTORIAL 8.1: Questions 6–10

NAME: _____

CLASS: _____

DATE: _____

8.1

1. Express each of the following equations in the form $Y = mX + c$, where X and Y are functions of x and/or y , and m and c are constants. State the value of m and of c .

(a) $y = 6x^2 + 1$

(b) $\frac{y^3}{4} = 7 - x$

(c) $5x + \frac{1}{x} = 8y$

(d) $\sqrt{y} = \frac{1}{2x-9}$

(e) $y = 3(10^x)$

(f) $6e^{2y} = \sqrt[3]{x}$

2. In each of the following equations, a and b are constants. Express each equation in the form $Y = mX + c$, where X and Y are functions of x and/or y , and m and c are constants.

(a) $e^y = ab^x$

(b) $\sqrt{y} = \frac{ax}{x^2 - b}$

3. The variables x and y are related by the equation $py + qx = x^2$, where p and q are constants.

When a graph of $\frac{y}{x}$ is plotted against x , the resulting line has a gradient of $\frac{1}{4}$ and an intercept of -7 on the $\frac{y}{x}$ -axis. Find the value of p and of q .

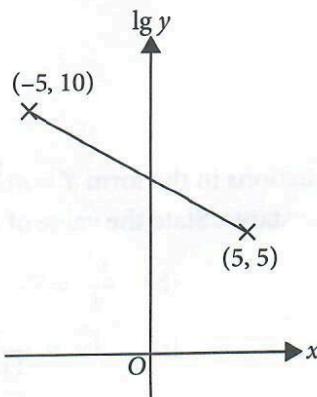
4. The variables x and y are related by an equation of the form $y = ax^b$, where a and b are constants. When a graph of $\ln y$ is plotted against $\ln x$, the resulting line has a gradient of -3 and a $(\ln y)$ -intercept of $\frac{1}{2}$. Find the value of a and of b .

5. The variables x and y are related by the equation $y = 6e^{-x}$.

(i) Show that $\ln y = -x + \ln 6$.

(ii) Sketch the graph of $\ln y$ against x .

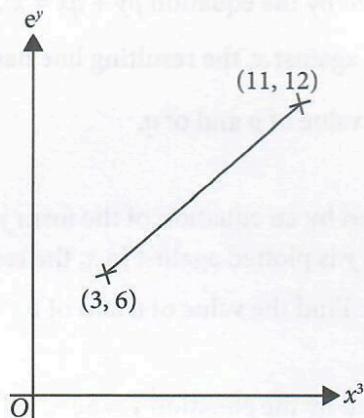
6.



The diagram shows part of a straight line graph of $\lg y$ against x , passing through the points $(-5, 10)$ and $(5, 5)$.

- Express y in terms of x .
- Find the value of x when $\lg y = 4$.

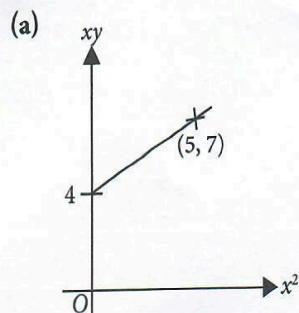
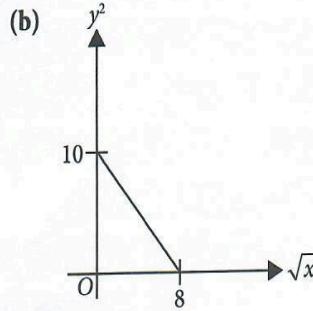
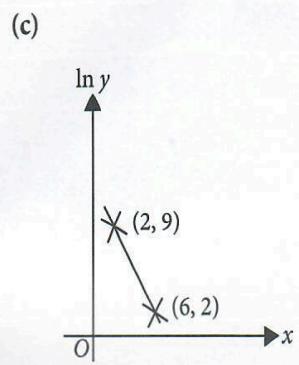
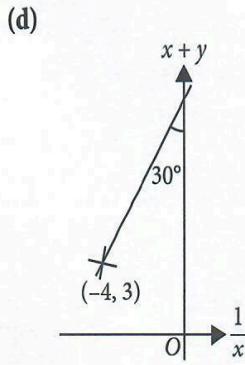
7.



The diagram shows part of a straight line graph of e^y against x^3 , passing through the points $(3, 6)$ and $(11, 12)$.

- Express y in terms of x .
- Find the value of y when $x = 10$.
- Another point, (h, k) , lies on the graph of e^y against x^3 . Give an example of the values of h and k .

8. Each of the following diagrams shows part of a straight line graph. Express y in terms of x .

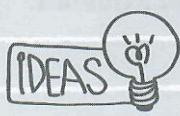


9. The variables x and y are related such that when values of $y - x^2$ are plotted against $\ln x$, a straight line is obtained. Given that the line passes through $(1, 3)$ and $(6, 8)$,

(i) express y in terms of x ,
 (ii) find the exact value of y when $x = 4$.

10. The variables x and y are such that when values of $\frac{1}{\sqrt{y}}$ are plotted against $\frac{1}{x}$, a straight line is

obtained. It is given that $y = 0.25$ when $x = -1$ and that $y = 1$ when $x = 3$. Find the value of y when $x = 9$.



(a)

(b)

(c)

IDEAS icon: A cartoon-style icon of a lit lightbulb with the word 'IDEAS' written in a speech bubble shape above it.

8.2 Applications of the Linear Law

Objectives Checklist

- Find the unknown constants of a non-linear equation from the corresponding straight line graph
- Model and solve problems in the sciences and in the real world using non-linear equations and their corresponding straight line graphs

Notes and Worked Examples

Non-linear equations and their corresponding straight line graphs can be used to **model** problems in the sciences and in the real world.

WORKED EXAMPLE

1

Solving problems involving the line of best fit

The table shows experimental values of two variables, x and y , which are connected by an equation of the form $yx^b = a$, where a and b are constants.

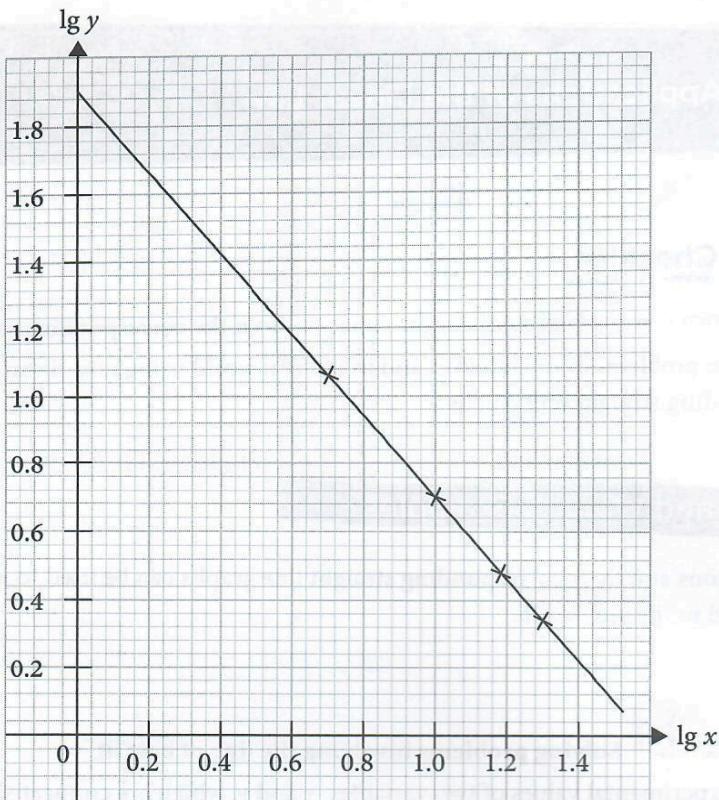
x	5	10	15	20
y	11.60	5.05	3.10	2.20

- Using a scale of 1 cm to 0.1 unit on each axis, plot $\lg y$ against $\lg x$ and draw a straight line graph.
- Use your graph to estimate the value of a and of b .

SOLUTION

- Construct a table of values of $\lg x$ and $\lg y$.

$X = \lg x$	0.699	1	1.176	1.301
$Y = \lg y$	1.064	0.703	0.491	0.342



(ii) $yx^b = a$

$$\lg yx^b = \lg a$$

$$\lg y + b \lg x = \lg a$$

$\lg y = -b \lg x + \lg a$ \leftarrow Rearrange the equation into the form $Y = mX + c$.

From the graph, $\lg y$ -intercept = 1.9.

$$\lg a = 1.9$$

$$a = 10^{1.9}$$

$$= 79 \text{ (to 2 s.f.)}$$

Using points (0, 1.9) and (1.2, 0.46),

$$\begin{aligned} \text{gradient} &= \frac{0.46 - 1.9}{1.2 - 0} \\ &= -1.2 \end{aligned}$$

$$-b = -1.2$$

$$b = 1.2$$

$$\therefore a = 79, b = 1.2$$

TRY

TUTORIAL 8.2: Questions 1, 2

WORKED EXAMPLE

2

Applying the Linear Law in the sciences

Focal length of a lens. In a science laboratory, a student is performing an experiment to determine the focal length, f mm, of a lens. He places an object at a distance, u mm, from the lens and records the distance, v mm, at which the image is seen on the other side of the lens. The table shows the results he obtains.

u	40	60	80	100	120
v	93	65	43	39	37

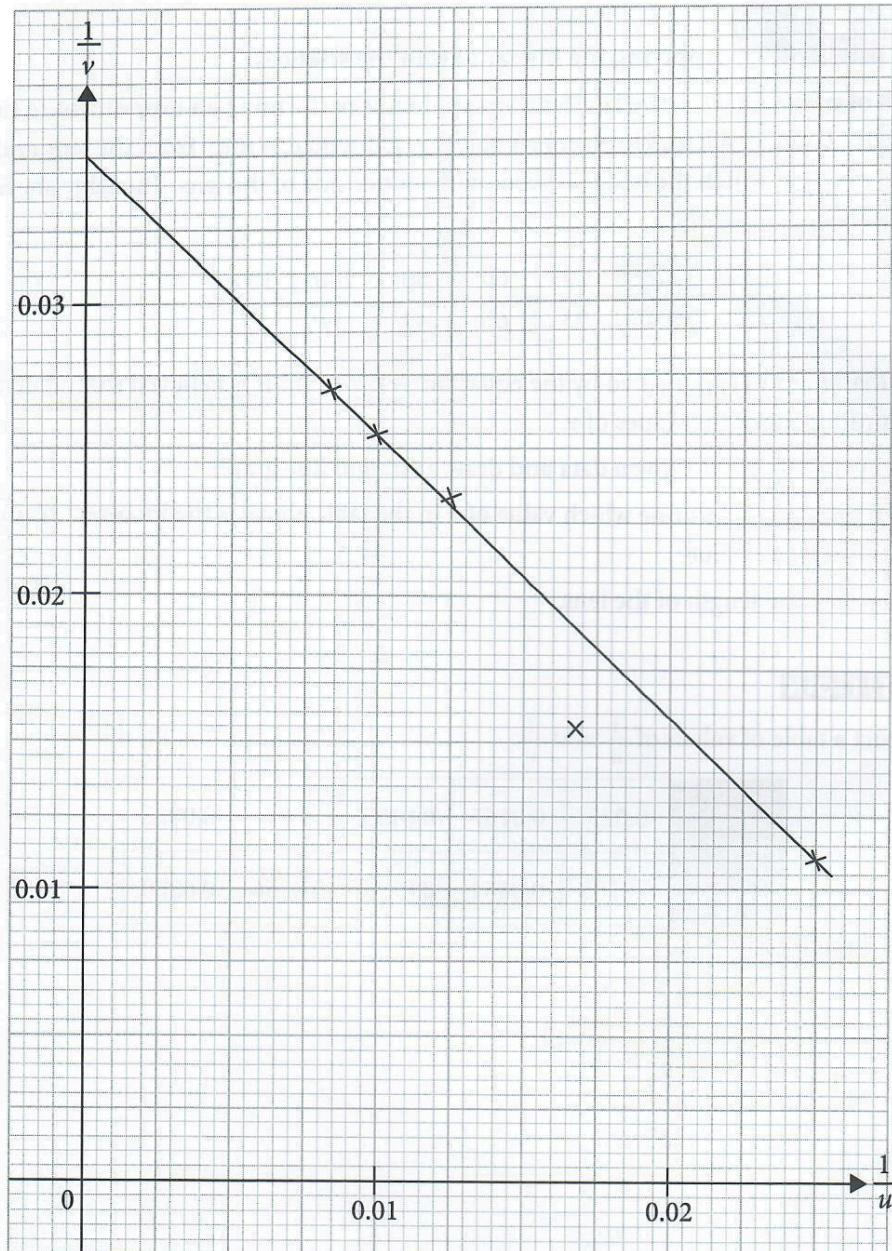
It is known that u , v and f are related by the equation $\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$. It is believed that an error was made in recording one of the values of v .

- Plot $\frac{1}{v}$ against $\frac{1}{u}$ for the given data and draw a straight line graph.
- Use your graph to determine which value of v in the table above is the incorrect reading and estimate its correct value.
- Estimate the focal length of the lens.

SOLUTION

- Construct a table of values of $\frac{1}{u}$ and $\frac{1}{v}$.

$X = \frac{1}{u}$	0.025	0.0167	0.0125	0.01	0.0083
$Y = \frac{1}{v}$	0.0108	0.0154	0.0233	0.0256	0.0270



(ii) From the graph, $v = 65$ is the incorrect reading.

Since $\frac{1}{v} = 0.019$, then $v = 53$ (to 2 s.f.)

\therefore The correct value is $v = 53$.

(iii) $\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$

$$\frac{1}{v} = -\frac{1}{u} + \frac{1}{f} \quad \leftarrow \text{Rearrange the equation into the form } Y = mX + c.$$

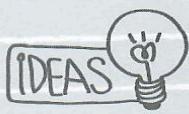
From the graph, $\frac{1}{v}$ -intercept = 0.035.

$$\begin{aligned}\frac{1}{f} &= 0.035 \\ f &= 29 \text{ (to 2 s.f.)}\end{aligned}$$

∴ The focal length of the lens is about 29 mm.

TRY

TUTORIAL 8.2: Questions 3, 4



NAME: _____ CLASS: _____ DATE: _____

8.2

1. The table shows experimental values of two variables, x and y , which are related by the equation $y = ax^2 + bx$, where a and b are constants.

x	3	5	7	9
y	3.9	11.5	23.1	38.7

(i) Plot $\frac{y}{x}$ against x and draw a straight line graph.
 (ii) Use your graph to estimate the value of a and of b .

2. The table shows experimental values of two variables, x and y , which are related by the equation $y = ax^b$, where a and b are constants.

x	5	10	15	20
y	29.8	84.3	154.9	238.5

(i) Express this equation in a form suitable for drawing a straight line graph.
 (ii) Draw this graph and use it to estimate the value of a and of b .
 (iii) Use the graph in part (ii) to solve the equation $ax^b = x^2$.

3. **Radioactivity of a compound.** Recorded values of the mass, m grams, of a radioactive substance, t hours after observations began, are shown in the table below.

m (grams)	61.4	50.3	41.2	33.7
t (hours)	10	20	30	40

It is known that m and t are related by the equation $m = m_0 e^{-kt}$, where m_0 and k are constants.

(i) Plot $\ln m$ against t and draw a straight line graph.
 Use your graph to estimate
 (ii) the mass of the substance when the observations began,
 (iii) the value of k ,
 (iv) the time taken for the substance to lose half of its original mass.

4. **Focal length of a lens.** In the end-of-year Physics practical examination, students are required to find the focal length, f cm, of an optical lens. Leo measures the object distance, u cm, and the corresponding image distance, v cm, and records the results in the table below.

u	30	40	50	60
v	30	24	21	20

It is known that u , v and f are related by the equation $\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$. Leo claims that an error was made in recording one of the values of v .

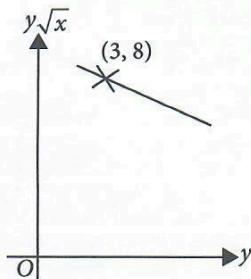
- Plot $\frac{1}{v}$ against $\frac{1}{u}$ and hence identify the value of v in the table above that is the incorrect reading.
- Draw the straight line graph and use it to estimate a value of v to replace the incorrect value of v found in part (i).
- Estimate the value of f .

NAME: _____ CLASS: _____ DATE: _____

Quick Test 8

[Total marks: 15]

1.



The diagram shows part of a straight line graph drawn to represent the equation $y = \frac{a}{2\sqrt{x} + b}$, where a and b are constants. Given that the line passes through the point $(3, 8)$ and has gradient $-\frac{1}{2}$, find the value of a and of b . [4]

2. **Speed of a toy truck.** The speed, v cm/s, of a toy truck, t s after passing a fixed point O , can be modelled by the equation $v = pe^{\frac{t}{q}} - 8$, where p and q are constants. The table below shows corresponding values of t and v .

t	2	4	6	8
v	30	24	19	15

- Using a scale of 1 cm to 1 unit on the t -axis and 10 cm to 1 unit on the $\ln(v + 8)$ -axis, draw the graph of $\ln(v + 8)$ plotted against t . [3]
- Use the graph to estimate the value of each of the constants p and q . [5]
- State the speed of the toy truck at O . [1]
- Explain how the graph could be used to find the value of t when the speed of the toy truck is 22 cm/s. [1]
- Using your values of p and q , calculate the value of t when the toy truck comes to rest. [1]

